分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测

分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测

目录

分类效果




基本描述

1.Matlab实现PSO-PNN粒子群优化概率神经网络多特征分类预测,运行环境Matlab2018b及以上;

2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容;

3.优化参数为PNN的散布值;

4.data为数据集,main为主程序,分类效果如下:

注:程序和数据放在一个文件夹。

概率神经网络(Probabilistic Neural Network,PNN)是一种基于统计原理的人工神经网络模型,它融合了径向基神经网络与经典的概率密度估计原理的优点,在模式分类方面表现出显著的优势。以下是对概率神经网络的详细介绍:

基本原理

概率神经网络以贝叶斯决策规则为核心思想,即错误分类的期望风险最小。它使用高斯函数进行概率密度估计,通过计算输入特征向量与训练集中各个模式的匹配程度(相似度),实现模式分类。其判别边界接近于贝叶斯最佳判定面,因此分类效果与最优贝叶斯分类器等价。

网络结构

概率神经网络一般包含以下四层:

输入层:负责将特征向量传入网络,输入层神经元的个数是样本特征的个数。

模式层(也称隐含层):通过连接权值与输入层连接,计算输入特征向量与训练集中各个模式的匹配程度,并将其距离送入高斯函数得到模式层的输出。模式层神经元的个数是输入样本矢量的个数,即有多少个样本,该层就有多少个神经元。

求和层(也称竞争层):负责将各个类的模式层单元连接起来,这一层的神经元个数是样本的类别数目。

输出层:负责输出求和层中得分最高的那一类,即最终的分类结果。

主要特点

训练简单、收敛快:概率神经网络的学习过程简单,训练速度快,非常适合实时处理。

分类准确、容错性好:概率神经网络在模式分类方面表现优异,其判别边界接近于贝叶斯最佳判定面,因此分类准确率高,且具有较强的容错性。

易于硬件实现:概率神经网络各层神经元的数目比较固定,因此易于硬件实现。

扩充性能好:增加或减少类别模式时,概率神经网络不需要重新进行长时间的训练学习,具有良好的扩充性能。

注:程序和数据放在一个文件夹。

程序设计

  • 完整程序和数据私信博主回复分类预测 | PSO-PNN粒子群优化概率神经网络多特征分类预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行



%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

         
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
roman_日积跬步-终至千里6 小时前
【人工智能基础06】人工神经网络(练习题):神经网络的计算、激活函数的选择与神经网络的退化
人工智能·深度学习·神经网络
通信仿真实验室7 小时前
Google BERT入门(5)Transformer通过位置编码学习位置
人工智能·深度学习·神经网络·自然语言处理·nlp·bert·transformer
AI浩9 小时前
激活函数在神经网络中的作用,以及Tramformer中的激活函数
人工智能·深度学习·神经网络
杨善锦9 小时前
mobile one神经网络
人工智能·深度学习·神经网络
机器学习之心9 小时前
一区正弦余弦算法!SCA-SVM正弦余弦算法优化支持向量机多特征分类预测
算法·支持向量机·分类·sca-svm·正弦余弦算法优化
宸码11 小时前
【机器学习】手写数字识别的最优解:CNN+Softmax、Sigmoid与SVM的对比实战
人工智能·python·神经网络·算法·机器学习·支持向量机·cnn
gz7seven14 小时前
将分类数据划分为训练集、测试集与验证集
人工智能·算法·分类·数据划分·训练集·验证集·测试集
葡萄爱14 小时前
机器学习 LightGBM -GBDT 多分类 点击率预测 检索排序
人工智能·机器学习·分类·数据挖掘·机器人·lightgbm·gbdt
IT古董14 小时前
【机器学习】机器学习的基本分类-无监督学习-主成分分析(PCA:Principal Component Analysis)
人工智能·学习·算法·机器学习·分类
WeeJot嵌入式16 小时前
神经网络的可解释性与欠拟合:平衡模型透明度与性能
人工智能·深度学习·神经网络