【大数据学习 | 面经】Spark的四种join方式

在Spark中,join操作用于合并两个数据集(如dataFrame和Dataset),其原理依赖于分布式计算的特性。Spark的join主要通过不同的连接策略来实现,选择哪种策略取决于多种因素,包括参数连接的数据集大小,是否进行了广播,是否有共同的分区分区键等。

1. Shuffle Hash Join

这是最常用的连接方式之一。当两个数据集都非常大且无法被广播时,Spark会使用shuffle hash join。这种连接方式的工作流程如下:

  • 数据按照连接键进行哈希分区。
  • 分区后的数据会在集群中重新分布。(shuffle)
  • 在每个工作节点上,对本地分区的数据执行连接操作。

这种方式的优点是通用性强,可以处理任意大小的数据集;缺点是需要进行全量的shuffle操作,这可能会带来较大的性能开销。

2. Broadcast Hash Join

当其中一个数据集相对较小(通常小于spark.sql.autoBroadcastJoinThreshold设置的阈值,默认为10M),spark可以将这个小的数据集广播到所有的工作节点上,然后在每个节点上与另一个大数据集进行连接。这种方式避免了shuffle操作,因此通常比shuffle hash join更快,但前提是广播的数据集必须足够小,以适应所有节点的内存。

3. Sort Merge Join

如果两个数据集都已经按照连接键排序,并且这些数据集很大,不适合广播,那么spark将采用sort Merge join。在这种情况下,spark首先会对两个数据集按照连接键排序,然后进行合并操作。此过程同样涉及到shuffle操作,因为数据可能需要重新分区以确保相同的键值的数据位于同一分区。sort Merge Join对于有序的数据集来说非常高效,但它也要求额外的排序步骤,这可能会增加一定的计算成本。

4. 笛卡尔积

当没有指定连接条件的时候,spark会执行笛卡尔积,即返回两个数据集所有行的组合。这种连接方式很少用,因为它会导致输出结果的数量急剧膨胀,通常是第一个数据集的行数乘上第二个数据集的行数。

5. 自适应查询执行和Join调优

从spark3.x开始引入的AQE功能可以在运行时动态优化join操作,例如,AQE可以根据实际的数据量决定是否应该使用广播连接,或者自动调整shuffle partitions的数量以优化性能。

相关推荐
l04090442229 小时前
想学习VLN相关的知识,并亲手搭建一套系统,该如何入手?
学习
阿里云大数据AI技术9 小时前
迅雷基于阿里云 EMR Serverless Spark 实现数仓资源效率与业务提升
spark
山土成旧客9 小时前
【Python学习打卡-Day36】实战重构:用PyTorch神经网络升级信贷预测项目
python·学习·重构
QYZL_AIGC10 小时前
全域众链AI赋能实体,开启数字化转型新生态
大数据·人工智能
麻雀无能为力10 小时前
VAE(变分自编码器 Variational Auto-Encoder)学习笔记
笔记·学习
SCKJAI10 小时前
推出高效能机器人边缘人工智能(AI)平台 ARC6N0 T5X
大数据·人工智能
TTBIGDATA10 小时前
【Knox编译】webhdfs-test 依赖收敛冲突问题处理
大数据·hadoop·ambari·hdp·kerberos·knox·bigtop
挽天java10 小时前
X86汇编语言期末复习
学习
北岛寒沫10 小时前
北京大学国家发展研究院 经济学原理课程笔记(第十九课 长期经济增长)
经验分享·笔记·学习
北芝科技10 小时前
AI在教育中的五大应用场景,助力教学与学习全面智能化解决方案
人工智能·学习