【大数据学习 | 面经】Spark的四种join方式

在Spark中,join操作用于合并两个数据集(如dataFrame和Dataset),其原理依赖于分布式计算的特性。Spark的join主要通过不同的连接策略来实现,选择哪种策略取决于多种因素,包括参数连接的数据集大小,是否进行了广播,是否有共同的分区分区键等。

1. Shuffle Hash Join

这是最常用的连接方式之一。当两个数据集都非常大且无法被广播时,Spark会使用shuffle hash join。这种连接方式的工作流程如下:

  • 数据按照连接键进行哈希分区。
  • 分区后的数据会在集群中重新分布。(shuffle)
  • 在每个工作节点上,对本地分区的数据执行连接操作。

这种方式的优点是通用性强,可以处理任意大小的数据集;缺点是需要进行全量的shuffle操作,这可能会带来较大的性能开销。

2. Broadcast Hash Join

当其中一个数据集相对较小(通常小于spark.sql.autoBroadcastJoinThreshold设置的阈值,默认为10M),spark可以将这个小的数据集广播到所有的工作节点上,然后在每个节点上与另一个大数据集进行连接。这种方式避免了shuffle操作,因此通常比shuffle hash join更快,但前提是广播的数据集必须足够小,以适应所有节点的内存。

3. Sort Merge Join

如果两个数据集都已经按照连接键排序,并且这些数据集很大,不适合广播,那么spark将采用sort Merge join。在这种情况下,spark首先会对两个数据集按照连接键排序,然后进行合并操作。此过程同样涉及到shuffle操作,因为数据可能需要重新分区以确保相同的键值的数据位于同一分区。sort Merge Join对于有序的数据集来说非常高效,但它也要求额外的排序步骤,这可能会增加一定的计算成本。

4. 笛卡尔积

当没有指定连接条件的时候,spark会执行笛卡尔积,即返回两个数据集所有行的组合。这种连接方式很少用,因为它会导致输出结果的数量急剧膨胀,通常是第一个数据集的行数乘上第二个数据集的行数。

5. 自适应查询执行和Join调优

从spark3.x开始引入的AQE功能可以在运行时动态优化join操作,例如,AQE可以根据实际的数据量决定是否应该使用广播连接,或者自动调整shuffle partitions的数量以优化性能。

相关推荐
椿融雪10 分钟前
分布式搜索和分析引擎Elasticsearch实战指南
大数据·分布式·elasticsearch
zx_zx_12321 分钟前
网络的学习 2 Socket
服务器·网络·学习
rannn_11142 分钟前
【MySQL学习|黑马笔记|Day3】多表查询(多表关系、内连接、外连接、自连接、联合查询、子查询),事务(简介、操作、四大体系、并发事务问题、事务隔离级别)
数据库·笔记·后端·学习·mysql
醉卧红尘的鱼1 小时前
最优估计准则与方法(5)加权最小二乘估计(WLS)_学习笔记
学习·算法
拓端研究室1 小时前
专题:2025机器人产业技术图谱与商业化指南|附130+份报告PDF、数据汇总下载
大数据·人工智能
码界筑梦坊1 小时前
91-基于Spark的空气质量数据分析可视化系统
大数据·python·数据分析·spark·django·numpy·pandas
leafpipi2 小时前
【机器学习】pycharm使用SSH SFTP 远程连接 ubuntu服务器 进行开发+调试+数据训练
服务器·学习·算法·ubuntu·pycharm·ssh
linweidong2 小时前
深入剖析 Spark Shuffle 机制:从原理到实战优化
大数据·分布式·spark·spark sql·数据开发·shuffle·数据倾斜
Chef_Chen2 小时前
从0开始学习R语言--Day62--RE插补
开发语言·学习·r语言
字节跳动数据平台2 小时前
企业落地 Data Agent,一共需要几步?
大数据·agent