人工智能大模型培训讲师叶梓:Llama Factory 微调模型实战分享提纲

LLaMA-Factory ------一个高效、易用的大模型训练与微调平台。它支持多种预训练模型,并且提供了丰富的训练算法,包括增量预训练、多模态指令监督微调、奖励模型训练等。

LLaMA-Factory的优势在于其简单易用的界面和强大的功能。用户可以在不编写任何代码的情况下,在本地完成上百种预训练模型的微调。

它支持多种运算精度,包括16bit全参数微调、冻结微调、LoRA微调,以及基于AQLM/AWQ/GPTQ等技术的QLoRA微调。

LLaMA-Factory还提供了多种优化算法,以及加速算子。这些工具和算法的结合,使得LLaMA-Factory成为一个功能全面、性能优异的微调平台。

此外,LLaMA-Factory还提供了实验面板,如LlamaBoard、TensorBoard等,帮助用户更好地监控和分析模型训练过程。

通过LLaMA-Factory,用户可以实现大模型的微调,以适应特定任务或领域,提高模型在特定场景下的表现和效果。它的易用性和高效性,使得即使是没有深厚机器学习背景的用户也能够轻松上手,进行大模型的微调工作。

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory ------ 一款革命性的大模型微调工具(限时免费)。

1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。

CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987

Llama Factory 微调模型实战分享内容

1、项目介绍

LLaMA Factory是一个用于大型语言模型(LLM)训练与微调的平台。

支持多种模型,如LLaMA、LLaVA、Mistral等。

提供多种训练算法,包括增量预训练、指令监督微调等。

支持多种运算精度和优化算法。

2、特性概览

模型种类:支持上百种预训练模型。

训练算法:包括增量预训练、多模态指令监督微调等。

运算精度:支持16比特全参数微调、冻结微调、LoRA微调等。

优化算法:包括GaLore、BAdam、DoRA等。

加速算子:如FlashAttention-2。

推理引擎:支持Transformers和vLLM。

实验面板:LlamaBoard等。

3、安装与配置

环境准备:包括硬件环境校验、CUDA和Pytorch环境安装。

安装步骤:通过git克隆仓库,使用pip安装。

模型下载:提供模型下载指南和使用说明。

4、训练方法

预训练(Pre-training):在大型通用数据集上进行无监督学习。

监督微调(Supervised Fine-Tuning):使用有标签数据集进行训练。

训练配置:提供训练配置文件示例。

5、数据集准备

数据集格式:支持alpaca和sharegpt数据格式。

数据集构建:指导如何构建自定义数据集。

6、微调与推理

微调流程:详细介绍微调步骤和参数设置。

微调效果评估:介绍如何评估微调效果。

推理引擎:介绍如何使用推理引擎进行模型推理。

API Server:指导如何启动API Server并调用模型。

叶梓老师介绍:

叶梓,工学博士,高级工程师。现某大型上市企业资深技术专家。

上海交通大学计算机专业博士毕业,在校期间的主研方向为数据挖掘、机器学习、人工智能。毕业后即进入某大型软件上市公司从事大数据、人工智能等技术相关工作,曾先后作为技术经理或总工程师,负责大型信息平台、市级信息平台的建设工作,并参与省级信息平台的建设;主持制定了包括多份信息化工程标准。在大数据应用、人工智能等方面都有着丰富的经验。

🌟 掌握未来AI技术,从Llama Factory开始!

🚀 深度学习系列分享课程,探索AI的无限可能!多精彩的深度学习系列分享课程:

一、微调技术的发展

1、微调基础理论:预训练和微调阶段的重要性

2、微调策略:LoRA、适配器调整、前缀调整等方法

3、参数高效微调(PEFT):Prompt Tuning、Prefix Tuning、LoRA等

4、实测效果比较好的freeze

二、Attention机制进展

1、Attention机制的起源和发展:从RNN到Transformer的自注意力机制

2、不同类型的Attention:软注意力与硬注意力、聚焦式与显著性注意力

3、多头自注意力机制

4、Flash Attention:高效注意力机制的突破,提高训练速度和内存效率

5、PagedAttention:在处理长序列、大模型和复杂的解码算法时,性能提升显著。

三、用于大模型微调的强化学习方法

1、PPO (Proximal Policy Optimization):一种基于策略梯度的强化学习算法,通过限制策略更新的幅度来保持学习过程的稳定性。

2、DPO (Direct Preference Optimization):DPO是一种直接优化用户或专家偏好的方法,它不依赖于传统的奖励建模或强化学习。

3、KTO (Kahneman-Tversky Optimization):KTO是一种基于前景理论的优化方法,它利用人类对损失的敏感性来优化模型。

......

相关推荐
黑马金牌编程2 小时前
深入浅出 Redis:从核心原理到运维实战指南一
数据库·redis·缓存·性能优化·非关系型数据库
LETTER•6 小时前
Llama 模型架构解析:从 Pre-RMSNorm 到 GQA 的技术演进
深度学习·语言模型·自然语言处理·llama
拓端研究室6 小时前
JupyterLab+PyTorch:LoRA+4-bit量化+SFT微调Llama 4医疗推理应用|附代码数据
llama
weixin_4396477910 小时前
JavaScript性能优化实战:从指标到落地的全链路方案
开发语言·javascript·性能优化
疯狂的Alex15 小时前
【C#避坑实战系列文章16】性能优化(CPU / 内存占用过高问题解决)
开发语言·性能优化·c#
码界奇点16 小时前
Nginx 502 Bad Gateway从 upstream 日志到 FastCGI 超时深度复盘
运维·nginx·阿里云·性能优化·gateway
鲲志说1 天前
电子证照系统国产化改造实践:从MongoDB到金仓数据库的平滑迁移与性能优化
大数据·数据库·mongodb·性能优化·数据库开发·数据库架构·金仓数据库
依米s1 天前
Pycharm 、IDEA卡顿问题解决方案
ide·python·性能优化·pycharm
之歆1 天前
LangGraph构建多智能体
人工智能·python·llama
黑马金牌编程2 天前
简易分析慢 SQL 的流程和方法
linux·数据库·mysql·性能优化·性能分析·慢日志