pytorch中model.eval的理解

在复现simsam的过程中,看到在线性评估部分的训练函数中设置了model.eval,不太理解,印象中一直觉得,model.eval会影响梯度的回传,这里来拨乱反正一下。

  1. 事实上,model.eval()主要影响 BatchNorm 和 Dropout 层的行为,确保它们在训练和评估时的表现一致。
    model.eval() 会做以下几件事:
  • BatchNorm 层:从计算每个批次的均值和方差,变成使用训练期间保存的全局均值和方差。这有助于模型在推理时保持一致的行为。
  • Dropout 层:将 Dropout 层禁用(即在训练时丢弃部分神经元的随机行为停止),以确保所有神经元参与计算。
  1. 而真正影响梯度回传的实际上是requires_grad=True。只要某一层该属性为True,那么这一层就会参与前向传播和反向传播。
  2. 结合simsiam的实际场景来看一下:
    在该场景中希望冻结模型的前几层(特征提取部分)并只训练后面的线性分类器部分,因此,将前面的层的 requires_grad 设置为 False,使得它们不会计算梯度和更新参数,后面的线性分类器部分保持 requires_grad=True,使其参与训练。同时在训练的过程中设置model.eval(),确保被冻结的层中的BN层的参数不会改变。

万万要搞清楚啊!

相关推荐
许泽宇的技术分享13 小时前
当AI学会拍短剧:Huobao Drama全栈AI短剧生成平台深度解析
人工智能
爱喝可乐的老王13 小时前
机器学习监督学习模型--线性回归
人工智能·机器学习·线性回归
金融Tech趋势派13 小时前
2025企业微信私有化部署优秀服务商:微盛·企微管家方案解析
人工智能·企业微信·scrm
Gofarlic_oms113 小时前
跨国企业Cadence许可证全球统一管理方案
java·大数据·网络·人工智能·汽车
AAD5558889913 小时前
牛肝菌目标检测:基于YOLOv8-CFPT-P2345模型的创新实现与应用_1
人工智能·yolo·目标检测
Smilecoc13 小时前
ChromeDriverManager:自动下载和管理chromedriver版本
开发语言·python
0思必得013 小时前
[Web自动化] Selenium元素定位
前端·python·selenium·自动化·html
幂链iPaaS13 小时前
制造业/零售电商ERP和MES系统集成指南
大数据·人工智能
weixin_4196583113 小时前
UISpy:Windows 界面控件的“显微镜“[特殊字符]
windows·python·测试工具·ui
gorgeous(๑>؂<๑)13 小时前
【中国科学院光电研究所-张建林组-AAAI26】追踪不稳定目标:基于外观引导的运动建模在无人机拍摄视频中实现稳健的多目标跟踪
人工智能·机器学习·计算机视觉·目标跟踪·无人机