pytorch中model.eval的理解

在复现simsam的过程中,看到在线性评估部分的训练函数中设置了model.eval,不太理解,印象中一直觉得,model.eval会影响梯度的回传,这里来拨乱反正一下。

  1. 事实上,model.eval()主要影响 BatchNorm 和 Dropout 层的行为,确保它们在训练和评估时的表现一致。
    model.eval() 会做以下几件事:
  • BatchNorm 层:从计算每个批次的均值和方差,变成使用训练期间保存的全局均值和方差。这有助于模型在推理时保持一致的行为。
  • Dropout 层:将 Dropout 层禁用(即在训练时丢弃部分神经元的随机行为停止),以确保所有神经元参与计算。
  1. 而真正影响梯度回传的实际上是requires_grad=True。只要某一层该属性为True,那么这一层就会参与前向传播和反向传播。
  2. 结合simsiam的实际场景来看一下:
    在该场景中希望冻结模型的前几层(特征提取部分)并只训练后面的线性分类器部分,因此,将前面的层的 requires_grad 设置为 False,使得它们不会计算梯度和更新参数,后面的线性分类器部分保持 requires_grad=True,使其参与训练。同时在训练的过程中设置model.eval(),确保被冻结的层中的BN层的参数不会改变。

万万要搞清楚啊!

相关推荐
All The Way North-几秒前
RNN基本介绍
rnn·深度学习·nlp·循环神经网络·时间序列
噎住佩奇3 分钟前
(Win11系统)搭建Python爬虫环境
爬虫·python
yatingliu20194 分钟前
将深度学习环境迁移至老旧系统| 个人学习笔记
笔记·深度学习·学习
撬动未来的支点6 分钟前
【AI】光速理解YOLO框架
人工智能·yolo·计算机视觉
电商API_180079052477 分钟前
批量获取电商商品数据的主流技术方法全解析
大数据·数据库·人工智能·数据分析·网络爬虫
basketball6168 分钟前
python 的对象序列化
开发语言·python
学境思源AcademicIdeas15 分钟前
我在手机上部署了一个AI大模型,用它写完了论文初稿【附提示词】
人工智能·智能手机
week_泽18 分钟前
第1课:AI Agent是什么 - 学习笔记_1
人工智能·笔记·学习
kebijuelun19 分钟前
REAP the Experts:去掉 MoE 一半专家还能保持性能不变
人工智能·gpt·深度学习·语言模型·transformer
医工交叉实验工坊21 分钟前
从零详解WGCNA分析
人工智能·机器学习