pytorch中model.eval的理解

在复现simsam的过程中,看到在线性评估部分的训练函数中设置了model.eval,不太理解,印象中一直觉得,model.eval会影响梯度的回传,这里来拨乱反正一下。

  1. 事实上,model.eval()主要影响 BatchNorm 和 Dropout 层的行为,确保它们在训练和评估时的表现一致。
    model.eval() 会做以下几件事:
  • BatchNorm 层:从计算每个批次的均值和方差,变成使用训练期间保存的全局均值和方差。这有助于模型在推理时保持一致的行为。
  • Dropout 层:将 Dropout 层禁用(即在训练时丢弃部分神经元的随机行为停止),以确保所有神经元参与计算。
  1. 而真正影响梯度回传的实际上是requires_grad=True。只要某一层该属性为True,那么这一层就会参与前向传播和反向传播。
  2. 结合simsiam的实际场景来看一下:
    在该场景中希望冻结模型的前几层(特征提取部分)并只训练后面的线性分类器部分,因此,将前面的层的 requires_grad 设置为 False,使得它们不会计算梯度和更新参数,后面的线性分类器部分保持 requires_grad=True,使其参与训练。同时在训练的过程中设置model.eval(),确保被冻结的层中的BN层的参数不会改变。

万万要搞清楚啊!

相关推荐
野生面壁者章北海25 分钟前
ICML2025|基于Logits的大语言模型端到端文本水印方法
人工智能·语言模型·自然语言处理
说私域28 分钟前
开源AI智能名片链动2+1模式S2B2C商城小程序:分享经济时代的技术赋能与模式创新
人工智能·小程序·开源
檀越剑指大厂1 小时前
【Python系列】fastapi和flask中的阻塞问题
python·flask·fastapi
HaiLang_IT1 小时前
基于深度学习的磁共振图像膝关节损伤多标签识别系统研究
人工智能·深度学习
月下倩影时1 小时前
视觉学习——卷积与神经网络:从原理到应用(量大管饱)
人工智能·神经网络·学习
思绪漂移1 小时前
CodeBuddy AI IDE:全栈AI开发平台实战
ide·人工智能·ai code
长空任鸟飞_阿康1 小时前
AI 多模态全栈应用项目描述
前端·vue.js·人工智能·node.js·语音识别
Mintopia1 小时前
🌐 实时协同 AIGC:多人在线 Web 创作的技术架构设计
前端·人工智能·trae
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2025-11-14
人工智能·经验分享·搜索引擎·产品运营
Mintopia1 小时前
🔥 “Solo Coding”的近期热度解析(截至 2025 年末)
前端·人工智能·trae