pytorch中model.eval的理解

在复现simsam的过程中,看到在线性评估部分的训练函数中设置了model.eval,不太理解,印象中一直觉得,model.eval会影响梯度的回传,这里来拨乱反正一下。

  1. 事实上,model.eval()主要影响 BatchNorm 和 Dropout 层的行为,确保它们在训练和评估时的表现一致。
    model.eval() 会做以下几件事:
  • BatchNorm 层:从计算每个批次的均值和方差,变成使用训练期间保存的全局均值和方差。这有助于模型在推理时保持一致的行为。
  • Dropout 层:将 Dropout 层禁用(即在训练时丢弃部分神经元的随机行为停止),以确保所有神经元参与计算。
  1. 而真正影响梯度回传的实际上是requires_grad=True。只要某一层该属性为True,那么这一层就会参与前向传播和反向传播。
  2. 结合simsiam的实际场景来看一下:
    在该场景中希望冻结模型的前几层(特征提取部分)并只训练后面的线性分类器部分,因此,将前面的层的 requires_grad 设置为 False,使得它们不会计算梯度和更新参数,后面的线性分类器部分保持 requires_grad=True,使其参与训练。同时在训练的过程中设置model.eval(),确保被冻结的层中的BN层的参数不会改变。

万万要搞清楚啊!

相关推荐
无心水12 小时前
【分布式利器:腾讯TSF】7、TSF高级部署策略全解析:蓝绿/灰度发布落地+Jenkins CI/CD集成(Java微服务实战)
java·人工智能·分布式·ci/cd·微服务·jenkins·腾讯tsf
北辰alk17 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云17 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm104317 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里18 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai17818 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京18 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
Learn-Python18 小时前
MongoDB-only方法
python·sql
TGITCIC19 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬19 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能