pytorch中model.eval的理解

在复现simsam的过程中,看到在线性评估部分的训练函数中设置了model.eval,不太理解,印象中一直觉得,model.eval会影响梯度的回传,这里来拨乱反正一下。

  1. 事实上,model.eval()主要影响 BatchNorm 和 Dropout 层的行为,确保它们在训练和评估时的表现一致。
    model.eval() 会做以下几件事:
  • BatchNorm 层:从计算每个批次的均值和方差,变成使用训练期间保存的全局均值和方差。这有助于模型在推理时保持一致的行为。
  • Dropout 层:将 Dropout 层禁用(即在训练时丢弃部分神经元的随机行为停止),以确保所有神经元参与计算。
  1. 而真正影响梯度回传的实际上是requires_grad=True。只要某一层该属性为True,那么这一层就会参与前向传播和反向传播。
  2. 结合simsiam的实际场景来看一下:
    在该场景中希望冻结模型的前几层(特征提取部分)并只训练后面的线性分类器部分,因此,将前面的层的 requires_grad 设置为 False,使得它们不会计算梯度和更新参数,后面的线性分类器部分保持 requires_grad=True,使其参与训练。同时在训练的过程中设置model.eval(),确保被冻结的层中的BN层的参数不会改变。

万万要搞清楚啊!

相关推荐
上不如老下不如小31 分钟前
2025年第七届全国高校计算机能力挑战赛 决赛 Python组 编程题汇总
开发语言·python
User_芊芊君子1 小时前
AI Ping 深度评测:大模型 API 选型的 “理性决策中枢”,终结经验主义选型时代
人工智能
smile_Iris1 小时前
Day 32 类的定义和方法
开发语言·python
reasonsummer1 小时前
【教学类-89-11】20251209新年篇07——灰色姓名对联(名字做对联,姓氏做横批,福字贴(通义万相AI福字空心字))
python·通义万相
明天再做行么2 小时前
一些我用人工智能 翻译文章的心得
人工智能
晚霞的不甘8 小时前
小智AI音箱:智能语音交互的未来之选
人工智能·交互·neo4j
java1234_小锋8 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构介绍
深度学习·语言模型·llm·transformer
飞Link8 小时前
【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
网络·人工智能·音视频
yLDeveloper8 小时前
一只菜鸟学深度学习的日记:填充 & 步幅 & 下采样
深度学习·dive into deep learning
老蒋新思维8 小时前
创客匠人峰会实录:知识变现的场景化革命 —— 创始人 IP 如何在垂直领域建立变现壁垒
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人