pytorch中model.eval的理解

在复现simsam的过程中,看到在线性评估部分的训练函数中设置了model.eval,不太理解,印象中一直觉得,model.eval会影响梯度的回传,这里来拨乱反正一下。

  1. 事实上,model.eval()主要影响 BatchNorm 和 Dropout 层的行为,确保它们在训练和评估时的表现一致。
    model.eval() 会做以下几件事:
  • BatchNorm 层:从计算每个批次的均值和方差,变成使用训练期间保存的全局均值和方差。这有助于模型在推理时保持一致的行为。
  • Dropout 层:将 Dropout 层禁用(即在训练时丢弃部分神经元的随机行为停止),以确保所有神经元参与计算。
  1. 而真正影响梯度回传的实际上是requires_grad=True。只要某一层该属性为True,那么这一层就会参与前向传播和反向传播。
  2. 结合simsiam的实际场景来看一下:
    在该场景中希望冻结模型的前几层(特征提取部分)并只训练后面的线性分类器部分,因此,将前面的层的 requires_grad 设置为 False,使得它们不会计算梯度和更新参数,后面的线性分类器部分保持 requires_grad=True,使其参与训练。同时在训练的过程中设置model.eval(),确保被冻结的层中的BN层的参数不会改变。

万万要搞清楚啊!

相关推荐
mwq301233 分钟前
GPT:GELU (Gaussian Error Linear Unit) 激活函数详解
人工智能
数据库安全8 分钟前
山东省某三甲医院基于分类分级的数据安全防护建设实践
大数据·人工智能
七牛云行业应用11 分钟前
从API调用到智能体编排:GPT-5时代的AI开发新模式
大数据·人工智能·gpt·openai·agent开发
StarPrayers.13 分钟前
用 PyTorch 搭建 CIFAR10 线性分类器:从数据加载到模型推理全流程解析
人工智能·pytorch·python
程序员杰哥15 分钟前
UI自动化测试实战:从入门到精通
自动化测试·软件测试·python·selenium·测试工具·ui·职场和发展
SunnyRivers17 分钟前
通俗易懂理解python yield
python
mortimer18 分钟前
Python 进阶:彻底理解类属性、类方法与静态方法
后端·python
Francek Chen29 分钟前
【深度学习计算机视觉】13:实战Kaggle比赛:图像分类 (CIFAR-10)
深度学习·计算机视觉·分类
Ro Jace41 分钟前
模式识别与机器学习课程笔记(11):深度学习
笔记·深度学习·机器学习
碱化钾43 分钟前
Lipschitz连续及其常量
人工智能·机器学习