pytorch中model.eval的理解

在复现simsam的过程中,看到在线性评估部分的训练函数中设置了model.eval,不太理解,印象中一直觉得,model.eval会影响梯度的回传,这里来拨乱反正一下。

  1. 事实上,model.eval()主要影响 BatchNorm 和 Dropout 层的行为,确保它们在训练和评估时的表现一致。
    model.eval() 会做以下几件事:
  • BatchNorm 层:从计算每个批次的均值和方差,变成使用训练期间保存的全局均值和方差。这有助于模型在推理时保持一致的行为。
  • Dropout 层:将 Dropout 层禁用(即在训练时丢弃部分神经元的随机行为停止),以确保所有神经元参与计算。
  1. 而真正影响梯度回传的实际上是requires_grad=True。只要某一层该属性为True,那么这一层就会参与前向传播和反向传播。
  2. 结合simsiam的实际场景来看一下:
    在该场景中希望冻结模型的前几层(特征提取部分)并只训练后面的线性分类器部分,因此,将前面的层的 requires_grad 设置为 False,使得它们不会计算梯度和更新参数,后面的线性分类器部分保持 requires_grad=True,使其参与训练。同时在训练的过程中设置model.eval(),确保被冻结的层中的BN层的参数不会改变。

万万要搞清楚啊!

相关推荐
Piar1231sdafa14 小时前
【计算机视觉】YOLO11-DGCST:轴承表面划痕检测新方案
人工智能·计算机视觉
TG:@yunlaoda360 云老大14 小时前
华为云国际站代理商的UCS主要有什么作用呢?
人工智能·自然语言处理·华为云·云计算
中维ZWPD14 小时前
打破工业软件分类桎梏:ZWPD的实践探索与创新突破
人工智能·3d·流程图
极客BIM工作室14 小时前
让AI自动“造房间”:SpatialGen是什么?
人工智能
serve the people14 小时前
TensorFlow 2.0 手写数字分类教程
人工智能·分类·tensorflow
free-elcmacom14 小时前
机器学习高阶教程<7>Transformer原理全景解读:从“序列困境”到“注意力革命”
人工智能·python·机器学习·transformer
才思喷涌的小书虫14 小时前
DINO-X 视觉模板挑战赛火热报名中
人工智能·目标检测·计算机视觉·ai·数据标注·图像标注·模型定制
AI营销实验室14 小时前
原圈科技AI CRM系统创新模式深度解析,助力工业B2B企业转型
大数据·人工智能·科技
RwwH14 小时前
PyCharm虚拟环境创建
ide·python·pycharm
暗之星瞳14 小时前
随机森林(初步学习)
算法·随机森林·机器学习