卷积网络和残差网络

import torch

import torch.nn as nn

import torchvision

import torchvision.transforms as transforms

设备配置

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

Hyper parameters

num_epochs = 5

num_classes = 10

batch_size = 100

learning_rate = 0.001

卷积神经网络

CIFAR10 dataset

train_dataset = torchvision.datasets.CIFAR10(root='./datasets',

train=True,

transform=transforms.ToTensor(),

download=True)

test_dataset = torchvision.datasets.CIFAR10(root='./datasets',

train=False,

transform=transforms.ToTensor())

Data loader

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,

batch_size=batch_size,

shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,

batch_size=batch_size,

shuffle=False)

img,label=next(iter(train_dataset))

aa=nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2)(img)

aa.shape

卷积神经网络 (两个卷积层)

class ConvNet(nn.Module):

def init(self, num_classes=10):

super(ConvNet, self).init()

特征提取层1

self.layer1 = nn.Sequential(

因为核大小是5,不填充的话少两行两列,所以填充2,表示上下左右都填充两行(列)

以保持尺寸不变

nn.Conv2d(3, 16, kernel_size=5, stride=1, padding=2),

nn.BatchNorm2d(16),

nn.ReLU(),

nn.MaxPool2d(kernel_size=2, stride=2))

特征提取层2

self.layer2 = nn.Sequential(

nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),

nn.BatchNorm2d(32),

nn.ReLU(),

nn.MaxPool2d(kernel_size=2, stride=2))

输出层

self.fc = nn.Linear(8*8*32, num_classes)

def forward(self, x):

out = self.layer1(x) # (16,16,16)

out = self.layer2(out) # (32,8,8)

out = out.reshape(out.size(0), -1)

out = self.fc(out)

return out

model = ConvNet(num_classes).to(device)

Loss and optimizer

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

Train the model

total_step = len(train_loader) # 总批次数

for epoch in range(num_epochs):

遍历数据加载器中的每个批次的数据

for i, (images, labels) in enumerate(train_loader):

images = images.to(device)

labels = labels.to(device)

前向传播,计算损失

outputs = model(images)

loss = criterion(outputs, labels)

清理之前的梯度,反向传播,根据梯度更新参数

optimizer.zero_grad()

loss.backward()

optimizer.step()

if (i+1) % 100 == 0: # 打印日志

print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'

.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

评估模型

当模型被设置为评估模式时,其内部的Batch Normalization层会利用之前训练过程中积累下来的统计信息

(移动平均值和方差)来进行归一化操作,而不是依据当前输入的具体小批量数据。这种做法有利于提高模型在

新数据上的泛化能力。

model.eval()

with torch.no_grad():

correct = 0 # 用来统计模型预测正确的样本数

total = 0 # 用来统计总样本数

for images, labels in test_loader:

images = images.to(device)

labels = labels.to(device)

outputs = model(images)

_, predicted = torch.max(outputs.data, 1)

total += labels.size(0)

correct += (predicted == labels).sum().item()

print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

Save the model checkpoint

torch.save(model.state_dict(), 'model.ckpt')

import torch.nn as nn

import torchvision

import torchvision.transforms as transforms

Device configuration

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Hyper-parameters

num_epochs = 60

batch_size = 100

learning_rate = 0.001

图像预处理模块(训练集上的增强)

transform = transforms.Compose([

transforms.Pad(4),

transforms.RandomHorizontalFlip(), # 随机水平翻转

transforms.RandomCrop(32), # 随机裁剪

transforms.ToTensor()]) # 0-1的归一化

CIFAR-10 dataset

train_dataset = torchvision.datasets.CIFAR10(root='./datasets',

train=True,

transform=transform,

download=True)

test_dataset = torchvision.datasets.CIFAR10(root='datasets',

train=False,

transform=transforms.ToTensor())

Data loader

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,

batch_size=batch_size,

shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,

batch_size=batch_size,

shuffle=False)

3x3 卷积,因为3x3的卷积,所以上下左右都设置为填充1,bias=False不计算截距

def conv3x3(in_channels, out_channels, stride=1):

return nn.Conv2d(in_channels, out_channels, kernel_size=3,

stride=stride, padding=1, bias=False)

残差块

class ResidualBlock(nn.Module):

def init(self, in_channels, out_channels, stride=1, downsample=None):

super(ResidualBlock, self).init()

self.conv1 = conv3x3(in_channels, out_channels, stride) # 3x3卷积

self.bn1 = nn.BatchNorm2d(out_channels)

self.relu = nn.ReLU(inplace=True)

self.conv2 = conv3x3(out_channels, out_channels)

self.bn2 = nn.BatchNorm2d(out_channels)

self.downsample = downsample

def forward(self, x):

residual = x # 残差前段

out = self.conv1(x) # 标准卷积

out = self.bn1(out)

out = self.relu(out)

out = self.conv2(out)

out = self.bn2(out)

如果设置了downsample的话,就做下采样

if self.downsample:

residual = self.downsample(x)

残差的两部分不会经过激活函数处理,这是为了维持卷积的线性

out += residual # 残差连接

out = self.relu(out) # 残差后经过激活函数处理

return out

m = nn.AvgPool2d((3, 2), stride=(2, 1))

input = torch.randn(20, 16, 50, 32)

output = m(input)

a=torch.randn(1,64,8,8)

b=nn.AvgPool2d(8)(a)

b.shape

ResNet

class ResNet(nn.Module):

def init(self, block, layers, num_classes=10):

super(ResNet, self).init()

self.in_channels = 16

self.conv = conv3x3(3, 16)

self.bn = nn.BatchNorm2d(16)

inplace=True:这个参数指定了是否进行就地操作。在就地操作模式下,ReLU直接修改输入张量的内容,

而不是创建一个新的输出张量。这可以节省内存,因为不需要额外的空间来存储新的输出张量。但是,需要

注意的是,就地操作可能会影响计算图的构建,特别是当你需要保留原始输入数据以供后续使用时。

self.relu = nn.ReLU(inplace=True)

self.layer1 = self.make_layer(block, 16, layers[0])

self.layer2 = self.make_layer(block, 32, layers[1], 2)

self.layer3 = self.make_layer(block, 64, layers[2], 2)

self.avg_pool = nn.AvgPool2d(8)

self.fc = nn.Linear(64, num_classes)

def make_layer(self, block, out_channels, blocks, stride=1):

downsample = None

如果步长为2(内部要下采样)或者输入数据的通道数不等于最后的输出通道数

if (stride != 1) or (self.in_channels != out_channels):

设置残差前段转换块

downsample = nn.Sequential(

conv3x3(self.in_channels, out_channels, stride=stride),

nn.BatchNorm2d(out_channels))

layers = []

添加第一个残差提取块

layers.append(block(self.in_channels, out_channels, stride, downsample))

self.in_channels = out_channels

之后的提取块(不需要传入downsample),因为这时候输入输出通道相同,步长为1

for i in range(1, blocks):

layers.append(block(out_channels, out_channels))

对列表进行拆包,构建多次提取块

return nn.Sequential(*layers)

整个前向传播可以看成嵌套复合函数

def forward(self, x):

out = self.conv(x) # 3-->16

out = self.bn(out)

out = self.relu(out)

第一个特征提取块(不会改变特征图尺寸和通道)

out = self.layer1(out)

第二个提取块(改变特征图尺寸和通道)

out = self.layer2(out) # 16-->32 (16,16)

第三个提取块(改变特征图尺寸和通道)

out = self.layer3(out) # 32-->64 (8,8)

平均池化

out = self.avg_pool(out)

变形,把样本表示成向量形式

out = out.view(out.size(0), -1)

out = self.fc(out) # 输出层

return out

第二个列表是残差块的提取深度列表

model = ResNet(ResidualBlock, [2, 2, 2]).to(device)

Loss and optimizer

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

用于更新学习率

def update_lr(optimizer, lr):

for param_group in optimizer.param_groups:

param_group['lr'] = lr

训练模型

total_step = len(train_loader) #一个轮次的训练批次

curr_lr = learning_rate # 初始学习率

for epoch in range(num_epochs):

遍历每个批次

for i, (images, labels) in enumerate(train_loader):

images = images.to(device)

labels = labels.to(device)

获取logits,计算预测和真实之间的误差

outputs = model(images)

loss = criterion(outputs, labels)

清理之前梯度,反向传播,根据梯度更新模块参数

optimizer.zero_grad()

loss.backward()

optimizer.step()

每割100次打印日志

if (i+1) % 100 == 0:

print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"

.format(epoch+1, num_epochs, i+1, total_step, loss.item()))

根据轮次改变学习率(每20个轮次)

if (epoch+1) % 20 == 0:

curr_lr /= 3

update_lr(optimizer, curr_lr)

评估模式

model.eval()

禁用梯度是为了减少内存消耗

with torch.no_grad():

correct = 0 # 统计预测正确的样本数

total = 0 # 统计总样本数

for images, labels in test_loader:

images = images.to(device)

labels = labels.to(device)

outputs = model(images)

_, predicted = torch.max(outputs.data, 1)

total += labels.size(0)

correct += (predicted == labels).sum().item()

print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

Save the model checkpoint

torch.save(model.state_dict(), 'resnet.ckpt')

相关推荐
麦田里的稻草人w44 分钟前
【pyqt】(二)基础框架
python·pyqt
无水先生1 小时前
两种分类代码:独热编码与标签编码
人工智能·深度学习
学计算机的睿智大学生1 小时前
关于python的数据分析与应用
开发语言·python·数据分析
qq_273900231 小时前
pytorch索引操作函数介绍
人工智能·pytorch·python
赵谨言1 小时前
基于python大数据的水利数据获取及大数据服务
经验分享·python·毕业设计
Chenglin_Yu1 小时前
Python嵌套列表的浅拷贝与深拷贝
开发语言·python
码农丁丁1 小时前
[python3]Excel解析库-xlutils
开发语言·python·excel
绍兴贝贝2 小时前
代码随想录算法训练营第五十二天|KM101.孤岛的总面积|KM102.沉没孤岛|KM103.水流问题|KM104.建造最大岛屿
数据结构·人工智能·python·算法·力扣
wang_yb2 小时前
探索Python @dataclass的内部原理
python·databook
莲动渔舟2 小时前
Python自学 - 递归函数
开发语言·python