5.11【机器学习】

先是对图像进行划分

划分完后,

顺序读取文件夹,在文件夹里顺序读取图片,

卷积层又称为滤波器,通道是说滤波器的个数,黑白通道数为1,RGB通道个数为3

在输入层,对于输入层而言,滤波器的数量就是图像的色彩通道数量

但是对于中间层而言,滤波器的数量,

卷积层叫做滤波器,内核,通道是滤波器的个数,输出的通道层数只与当前滤波器的通道个数有关

通道为2,滤波器有两个

黄色部分为滤波器,有两个,是所以通道数是2

前两个参数表示卷积核的宽高,自己设定,最后一个参数是输入数据的通道数,输入数据为三通道,所以最后一个参数是3

每次卷积完,对本次卷积核的值加上运算结果,得到一个新的卷积核,

读取数据集

对于花的所有类别里,令标志+1,路径就变为根路径加上类别路径

然后图像集就算是对应路径下的所有图像

合并的话合并的维度可以不同,其它维度必须相同

axis是说堆叠后的数据放在那个位置上

所谓范数,实际上就是范数距离,L1范数就是绝对值加和,L2是距离值加和,范数趋于正无穷时,最大数占据绝对优势,那么再开根号就是这个向量里的最大值

卷积层的作用就是缩小图像的数据特征,把图像缩到更小的里面,有几个卷积面就有几个特征图

池化层,2,2最大池化层

卷积层-》池化层

卷积层池化层完后得到的是特征图,立体的,

需要拉长,就是FLATTEN方法,这下就把特征图拉长变到了一个向量

再连到隐藏层,有512个隐藏层神经元

这里面就是构建模型

5*5的原图,经过3*3卷积后,会变成3*3的特征图,

7*7的会变成5*5,即(7-3)/1+1,除以的那个分母是卷积层移动的步长

所以64,64,3的经过一层3,3卷积,会变成62,62

有32个卷积层的话,就会得到32个特征图,卷积核

卷积层由卷积核构成,卷积核的长宽是直接得到的,但是还有一个RGB属性,是直接由原始图像的RGB决定的,第一个卷积层里一共有32个卷积核,每个卷积核27个参数

卷积完后得到32个特征图,要对图整体进行微调,32个偏置参数

池化层的目的就是对特征图做压缩,缩小特征图的特征数量,有平均池化,最大、最小池化

BATCH_SIZE是说从原始数据集里一次取出来的数据个数,20就是说明每轮迭代取出来20个

就是说数据生成器会循环地产生数据,然后指定每轮迭代恒产

相关推荐
HalvmånEver4 分钟前
AI 工具实战测评:从技术性能到场景落地的全方位解析
人工智能·ai
碧海银沙音频科技研究院13 分钟前
论文写作word插入公式显示灰色解决办法
人工智能·深度学习·算法
O561 6O623O7 安徽正华露17 分钟前
露,AI人工智能Barnes迷宫 AI人工智能自动记录水迷宫
人工智能
十铭忘29 分钟前
SAM2跟踪的理解6——mask decoder
人工智能·计算机视觉
不会计算机的g_c__b36 分钟前
AI Agent 三大核心组件解析:规划、记忆与工具使用,构建真正智能体
人工智能
听风吹等浪起38 分钟前
机器学习算法:随机梯度下降算法
人工智能·深度学习·算法·机器学习
Yuner200039 分钟前
Python机器学习:从零基础到深度实战
人工智能·python·机器学习
落羽的落羽40 分钟前
【C++】哈希扩展——位图和布隆过滤器的介绍与实现
linux·服务器·开发语言·c++·人工智能·算法·机器学习
拉姆哥的小屋40 分钟前
【深度学习实战】基于CyclePatch框架的电池寿命预测:从NASA数据集到Transformer模型的完整实现
人工智能·深度学习·transformer
speop43 分钟前
【datawhale组队学习】TASK01|课程导论:站在认知范式的临界点
人工智能·学习