基于常微分方程的神经网络(Neural ODE)

一、什么是常微分方程(ODE)

微分方程是包含未知函数及其导数的方程,未知函数导数的最高阶数称为该微分方程的阶

常微分方程(ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程

如:

二、Neural ODE与普通神经网络的区别

三、用ODE表示有什么优势

1.Powerful representation:微分方程可以用数值法求解,因此对于任何连续函数都有良好的逼近能力。

2.Memory efficiency:不需要用到反向传播,因此训练上节约内存

3.Simplicity:不需要考虑复杂的调参和网络设计,形式简洁

4.Abstraction:让网络不需要考虑每层需要做什么,只需要考虑怎么计算结果

四、求解微分方程

Neural ODE解的是带初始值的常微分方程

如果给定初识条件(0,1),则

这种解法微分方程满足一定的形式,但实际生活当中原函数比较复杂,通常会使用数值法求解原函数在各个点的值

比较出名的两个方法:① 欧拉法(Euler Method) ② 龙格库塔法 (Runge-Kutta)

欧拉法:

在给定初始条件和f的情况下,利用欧拉法可以推导出任意时刻的函数值

相关推荐
飞哥数智坊8 分钟前
不敢把个人信息喂给 AI?OneAIFW 简单搞定隐私保护!
人工智能
Coder_Boy_27 分钟前
【人工智能应用技术】-基础实战-环境搭建(基于springAI+通义千问)(二)
数据库·人工智能
Jurio.31 分钟前
Python Ray 分布式计算应用
linux·开发语言·python·深度学习·机器学习
爱加糖的橙子44 分钟前
Dify升级到Dify v1.10.1-fix修复CVE-2025-55182漏洞
人工智能·python·ai
齐齐大魔王1 小时前
OpenCV
人工智能·opencv·计算机视觉
老蒋新思维1 小时前
创客匠人峰会实录:创始人 IP 变现的 “人 + 智能体” 协同范式 —— 打破知识变现的能力边界
大数据·网络·人工智能·网络协议·tcp/ip·创始人ip·创客匠人
_codemonster1 小时前
深度学习实战(基于pytroch)系列(四十八)AdaGrad优化算法
人工智能·深度学习·算法
AI即插即用2 小时前
即插即用系列 | Attention GhostUNet++:基于多维注意力和 Ghost 模块的高效 CT 图像脂肪与肝脏分割网络
网络·图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
猎人everest2 小时前
LangChain 与其他大语言模型框架有什么区别
人工智能·语言模型·langchain