基于常微分方程的神经网络(Neural ODE)

一、什么是常微分方程(ODE)

微分方程是包含未知函数及其导数的方程,未知函数导数的最高阶数称为该微分方程的阶

常微分方程(ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程

如:

二、Neural ODE与普通神经网络的区别

三、用ODE表示有什么优势

1.Powerful representation:微分方程可以用数值法求解,因此对于任何连续函数都有良好的逼近能力。

2.Memory efficiency:不需要用到反向传播,因此训练上节约内存

3.Simplicity:不需要考虑复杂的调参和网络设计,形式简洁

4.Abstraction:让网络不需要考虑每层需要做什么,只需要考虑怎么计算结果

四、求解微分方程

Neural ODE解的是带初始值的常微分方程

如果给定初识条件(0,1),则

这种解法微分方程满足一定的形式,但实际生活当中原函数比较复杂,通常会使用数值法求解原函数在各个点的值

比较出名的两个方法:① 欧拉法(Euler Method) ② 龙格库塔法 (Runge-Kutta)

欧拉法:

在给定初始条件和f的情况下,利用欧拉法可以推导出任意时刻的函数值

相关推荐
神马行空1 小时前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队1 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
蒹葭苍苍8731 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
Json_1 小时前
Vue 构造器 Vue.extend
前端·vue.js·深度学习
Json_1 小时前
Vue 实例方法
前端·vue.js·深度学习
mosquito_lover11 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
船长@Quant1 小时前
PyTorch量化进阶教程:第二章 Transformer 理论详解
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
契合qht53_shine1 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Json_2 小时前
实例入门 实例属性
前端·深度学习