基于常微分方程的神经网络(Neural ODE)

一、什么是常微分方程(ODE)

微分方程是包含未知函数及其导数的方程,未知函数导数的最高阶数称为该微分方程的阶

常微分方程(ordinary differential equation,简称ODE)是未知函数只含有一个自变量的微分方程

如:

二、Neural ODE与普通神经网络的区别

三、用ODE表示有什么优势

1.Powerful representation:微分方程可以用数值法求解,因此对于任何连续函数都有良好的逼近能力。

2.Memory efficiency:不需要用到反向传播,因此训练上节约内存

3.Simplicity:不需要考虑复杂的调参和网络设计,形式简洁

4.Abstraction:让网络不需要考虑每层需要做什么,只需要考虑怎么计算结果

四、求解微分方程

Neural ODE解的是带初始值的常微分方程

如果给定初识条件(0,1),则

这种解法微分方程满足一定的形式,但实际生活当中原函数比较复杂,通常会使用数值法求解原函数在各个点的值

比较出名的两个方法:① 欧拉法(Euler Method) ② 龙格库塔法 (Runge-Kutta)

欧拉法:

在给定初始条件和f的情况下,利用欧拉法可以推导出任意时刻的函数值

相关推荐
沃达德软件3 小时前
视频增强技术解析
人工智能·目标检测·机器学习·计算机视觉·超分辨率重建
魔乐社区3 小时前
GLM-5上线魔乐社区,基于昇腾的模型推理+训练部署教程请查收!
人工智能·开源·大模型
geneculture4 小时前
化繁为简且以简驭繁:唯文论英汉对照哲学术语49个主义/论
人工智能·融智学的重要应用·哲学与科学统一性·信息融智学·融智时代(杂志)
睡醒了叭4 小时前
coze-工作流-http请求
人工智能·aigc
twilight_4695 小时前
机器学习与模式识别——机器学习中的搜索算法
人工智能·python·机器学习
冰西瓜6005 小时前
深度学习的数学原理(十)—— 权重如何自发分工
人工智能·深度学习·计算机视觉
niuniudengdeng5 小时前
基于时序上下文编码的端到端无文本依赖语音分词模型
人工智能·数学·算法·概率论
Soonyang Zhang6 小时前
flashinfer attention kernel分析
人工智能·算子·推理框架
林籁泉韵76 小时前
2026年GEO服务商推荐:覆盖多场景适配,助力企业AI时代增长
人工智能
Sinosecu-OCR6 小时前
释放数字化力量:智能OCR识别如何重塑现代办公效率
大数据·人工智能