OpenCV-图像阈值

简单阈值法

此方法是直截了当的。如果像素值大于阈值,则会被赋为一个值(可能为白色),否则会赋为另一个值(可能为黑色)。使用的函数是 cv.threshold。第一个参数是源图像,它应该是灰度图像。第二个参数是阈值,用于对像素值进行分类。第三个参数是 maxval,它表示像素值大于(有时小于)阈值时要给定的值。opencv 提供了不同类型的阈值,由函数的第四个参数决定。不同的类型有:

获得两个输出。第一个是 retval,稍后将解释。第二个输出是我们的阈值图像。

代码如下:

复制代码
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('gradient.png',0)
ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
ret,thresh2 = cv.threshold(img,127,255,cv.THRESH_BINARY_INV)
ret,thresh3 = cv.threshold(img,127,255,cv.THRESH_TRUNC)
ret,thresh4 = cv.threshold(img,127,255,cv.THRESH_TOZERO)
ret,thresh5 = cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in xrange(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

结果如下所示:

自适应阈值

在前一节中,我们使用一个全局变量作为阈值。但在图像在不同区域具有不同照明条件的条件下,这可能不是很好。在这种情况下,我们采用自适应阈值。在此,算法计算图像的一个小区域的阈值。因此,我们得到了同一图像不同区域的不同阈值,对于不同光照下的图像,得到了更好的结果。

它有三个"特殊"输入参数,只有一个输出参数。

Adaptive Method-它决定如何计算阈值。

Block Size-它决定了计算阈值的窗口区域的大小。

C-它只是一个常数,会从平均值或加权平均值中减去该值。

下面的代码比较了具有不同照明的图像的全局阈值和自适应阈值:

复制代码
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('sudoku.png',0)
img = cv.medianBlur(img,5)
ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
th2 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_MEAN_C,\
            cv.THRESH_BINARY,11,2)
th3 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,\
            cv.THRESH_BINARY,11,2)
titles = ['Original Image', 'Global Thresholding (v = 127)',
            'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in xrange(4):
    plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

结果如下所示:

Otsu 二值化

在全局阈值化中,我们使用一个任意的阈值,那么,我们如何知道我们选择的值是好的还是不好的呢?答案是,试错法。但是考虑一个双峰图像(简单来说,双峰图像是一个直方图有两个峰值的图像)。对于那个图像,我们可以近似地取这些峰值中间的一个值作为阈值,这就是 Otsu 二值化所做的。所以简单来说,它会自动从双峰图像的图像直方图中计算出阈值。(对于非双峰图像,二值化将不准确。)

为此,我们使用了 cv.threshold 函数,但传递了一个额外的符号 cv.THRESH_OTSU 。对于阈值,只需传入零。然后,该算法找到最佳阈值,并作为第二个输出返回 retval。如果不使用 otsu 阈值,则 retval 与你使用的阈值相同。

查看下面的示例。输入图像是噪声图像。在第一种情况下,我应用了值为 127 的全局阈值。在第二种情况下,我直接应用 otsu 阈值。在第三种情况下,我使用 5x5 高斯核过滤图像以去除噪声,然后应用 otsu 阈值。查看噪声过滤如何改进结果。

复制代码
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('noisy2.png',0)
# 全局阈值
ret1,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
# Otsu 阈值
ret2,th2 = cv.threshold(img,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
# 经过高斯滤波的 Otsu 阈值
blur = cv.GaussianBlur(img,(5,5),0)
ret3,th3 = cv.threshold(blur,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
# 画出所有的图像和他们的直方图
images = [img, 0, th1,
          img, 0, th2,
          blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
          'Original Noisy Image','Histogram',"Otsu's Thresholding",
          'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]
for i in xrange(3):
    plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
    plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
    plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
    plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
    plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
    plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
plt.show()

结果如下:

相关推荐
胡耀超5 分钟前
图像颜色理论与数据挖掘应用的全景解析
人工智能·python·opencv·计算机视觉·数据挖掘·视觉检测·pillow
R²AIN SUITE9 分钟前
快消零售AI转型:R²AIN SUITE如何破解效率困局
大数据·人工智能·产品运营
ONLYOFFICE12 分钟前
集成 ONLYOFFICE 与 AI 插件,为您的服务带来智能文档编辑器
人工智能·ai·编辑器·onlyoffice·文档编辑器·文档预览·文档协作
一个天蝎座 白勺 程序猿18 分钟前
GpuGeek全栈AI开发实战:从零构建企业级大模型生产管线(附完整案例)
人工智能·gpugeek
love530love20 分钟前
家用或办公 Windows 电脑玩人工智能开源项目配备核显的必要性(含 NPU 及显卡类型补充)
人工智能·windows·python·开源·电脑
深圳市青牛科技实业有限公司22 分钟前
D2203使用手册—高压、小电流LDO产品4.6V~36V、150mA
人工智能·单片机·嵌入式硬件·电动工具·工业散热风扇
shengjk126 分钟前
序列化和反序列化:从理论到实践的全方位指南
java·大数据·开发语言·人工智能·后端·ai编程
AI大模型顾潇27 分钟前
[特殊字符] 本地大模型编程实战(29):用大语言模型LLM查询图数据库NEO4J(2)
前端·数据库·人工智能·语言模型·自然语言处理·prompt·neo4j
2501_9153743542 分钟前
数据清洗的艺术:如何为AI模型准备高质量数据集?
人工智能·机器学习
山北雨夜漫步1 小时前
机器学习 Day17 朴素贝叶斯算法-----概率论知识
人工智能·算法·机器学习