图像边缘检测示例(综合利用阈值分割、数学形态学和边缘检测算子)

一、问题

读入一副灰度图像(如果是彩色图像,可以先将其转化为灰度图像),然后提取比较理想的灰度图像边缘。这里以moon.tif为例。

二、算法

大家一开始容易想到直接利用MATLAB的内置函数edge并采用不同边缘提取算子进行边缘提取,但效果不理想,该部分内容已在"图像边缘检测原理和常用检测算子及MATLAB实现"中讲过,这里就不赘述,感兴趣的同学可以阅读。本文提出一种边缘检测新思路,主要算法步骤如下:

1.读入图像 2.图像二值化 3.去除小目标 4.填充图像 5.图像边界平滑 6.边缘提取

三、程序代码

clear all;

close all;

clc;

gray_img = imread('moon.tif'); % 读取图像

%bw=imbinarize(gray_img);%阈值分割

bw=im2bw(gray_img,graythresh(gray_img));%阈值分割

bw2=bwareaopen(bw,100);%去除小区域

figure,imshow(bw2);

bw2_fill=imfill(bw2,'holes');

SE=strel('disk',2);%定义结构元素

%SE=strel('disk',3);%定义结构元素

bw2_fill_open=imopen(bw2_fill,SE);%数学形态学开运算

edge_bw=edge(bw2_fill_open);%对二值图像提取边缘

figure,imshow(edge_bw),title('月亮边缘检测结果');

figure('Name','使用阈值分割和数学形态学运算提取边缘','NumberTitle','off');

subplot(2,3,1),imshow(gray_img),title('原始灰度图像');

subplot(2,3,2),imshow(bw),title('最大类间方差法阈值分割');

subplot(2,3,3),imshow(bw2),title('去除小区域');

subplot(2,3,4),imshow(bw2_fill),title('填充孔洞');

subplot(2,3,5),imshow(bw2_fill_open),title('使用开运算平滑边缘');

subplot(2,3,6),imshow(edge_bw),title('月亮边缘检测结果');

四、主要运行结果

五、结果与讨论

由上面运行结果可以看出,采用上述的算法对边缘检测可以得到比较理想的结果。

如果大家觉得本文对大家学习和研究有所帮助,请点赞、关注和收藏,欢迎转发!谢谢大家!

相关推荐
undsky_2 分钟前
【RuoYi-SpringBoot3-Pro】:将 AI 编程融入传统 java 开发
java·人工智能·spring boot·ai·ai编程
薛定谔的猫19824 分钟前
十二、基于 BERT 的中文文本二分类模型测试实战:从数据加载到准确率评估
人工智能·分类·bert
淮北4945 分钟前
Reinforce算法
人工智能·机器学习
shangjian0077 分钟前
AI-大语言模型LLM-概念术语-Dropout
人工智能·语言模型·自然语言处理
小鸡吃米…7 分钟前
机器学习 - 高斯判别分析(Gaussian Discriminant Analysis)
人工智能·深度学习·机器学习
香芋Yu8 分钟前
【机器学习教程】第01章:机器学习概览
人工智能·机器学习
HySpark13 分钟前
关于语音智能技术实践与应用探索
人工智能·语音识别
AI应用开发实战派15 分钟前
AI人工智能中Bard的智能电子商务优化
人工智能·ai·bard
FL162386312920 分钟前
MMA综合格斗动作检测数据集VOC+YOLO格式1780张16类别
人工智能·yolo·机器学习
应用市场20 分钟前
深度学习图像超分辨率技术全面解析:从入门到精通
人工智能·深度学习