图像边缘检测示例(综合利用阈值分割、数学形态学和边缘检测算子)

一、问题

读入一副灰度图像(如果是彩色图像,可以先将其转化为灰度图像),然后提取比较理想的灰度图像边缘。这里以moon.tif为例。

二、算法

大家一开始容易想到直接利用MATLAB的内置函数edge并采用不同边缘提取算子进行边缘提取,但效果不理想,该部分内容已在"图像边缘检测原理和常用检测算子及MATLAB实现"中讲过,这里就不赘述,感兴趣的同学可以阅读。本文提出一种边缘检测新思路,主要算法步骤如下:

1.读入图像 2.图像二值化 3.去除小目标 4.填充图像 5.图像边界平滑 6.边缘提取

三、程序代码

clear all;

close all;

clc;

gray_img = imread('moon.tif'); % 读取图像

%bw=imbinarize(gray_img);%阈值分割

bw=im2bw(gray_img,graythresh(gray_img));%阈值分割

bw2=bwareaopen(bw,100);%去除小区域

figure,imshow(bw2);

bw2_fill=imfill(bw2,'holes');

SE=strel('disk',2);%定义结构元素

%SE=strel('disk',3);%定义结构元素

bw2_fill_open=imopen(bw2_fill,SE);%数学形态学开运算

edge_bw=edge(bw2_fill_open);%对二值图像提取边缘

figure,imshow(edge_bw),title('月亮边缘检测结果');

figure('Name','使用阈值分割和数学形态学运算提取边缘','NumberTitle','off');

subplot(2,3,1),imshow(gray_img),title('原始灰度图像');

subplot(2,3,2),imshow(bw),title('最大类间方差法阈值分割');

subplot(2,3,3),imshow(bw2),title('去除小区域');

subplot(2,3,4),imshow(bw2_fill),title('填充孔洞');

subplot(2,3,5),imshow(bw2_fill_open),title('使用开运算平滑边缘');

subplot(2,3,6),imshow(edge_bw),title('月亮边缘检测结果');

四、主要运行结果

五、结果与讨论

由上面运行结果可以看出,采用上述的算法对边缘检测可以得到比较理想的结果。

如果大家觉得本文对大家学习和研究有所帮助,请点赞、关注和收藏,欢迎转发!谢谢大家!

相关推荐
Warren2Lynch6 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale6 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant6 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138346 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo6 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms16 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑6 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei7 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing7 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
yusur7 小时前
边缘智算新引擎 DPU 驱动的算力革新
人工智能·科技·rdma·dpu