图像边缘检测示例(综合利用阈值分割、数学形态学和边缘检测算子)

一、问题

读入一副灰度图像(如果是彩色图像,可以先将其转化为灰度图像),然后提取比较理想的灰度图像边缘。这里以moon.tif为例。

二、算法

大家一开始容易想到直接利用MATLAB的内置函数edge并采用不同边缘提取算子进行边缘提取,但效果不理想,该部分内容已在"图像边缘检测原理和常用检测算子及MATLAB实现"中讲过,这里就不赘述,感兴趣的同学可以阅读。本文提出一种边缘检测新思路,主要算法步骤如下:

1.读入图像 2.图像二值化 3.去除小目标 4.填充图像 5.图像边界平滑 6.边缘提取

三、程序代码

clear all;

close all;

clc;

gray_img = imread('moon.tif'); % 读取图像

%bw=imbinarize(gray_img);%阈值分割

bw=im2bw(gray_img,graythresh(gray_img));%阈值分割

bw2=bwareaopen(bw,100);%去除小区域

figure,imshow(bw2);

bw2_fill=imfill(bw2,'holes');

SE=strel('disk',2);%定义结构元素

%SE=strel('disk',3);%定义结构元素

bw2_fill_open=imopen(bw2_fill,SE);%数学形态学开运算

edge_bw=edge(bw2_fill_open);%对二值图像提取边缘

figure,imshow(edge_bw),title('月亮边缘检测结果');

figure('Name','使用阈值分割和数学形态学运算提取边缘','NumberTitle','off');

subplot(2,3,1),imshow(gray_img),title('原始灰度图像');

subplot(2,3,2),imshow(bw),title('最大类间方差法阈值分割');

subplot(2,3,3),imshow(bw2),title('去除小区域');

subplot(2,3,4),imshow(bw2_fill),title('填充孔洞');

subplot(2,3,5),imshow(bw2_fill_open),title('使用开运算平滑边缘');

subplot(2,3,6),imshow(edge_bw),title('月亮边缘检测结果');

四、主要运行结果

五、结果与讨论

由上面运行结果可以看出,采用上述的算法对边缘检测可以得到比较理想的结果。

如果大家觉得本文对大家学习和研究有所帮助,请点赞、关注和收藏,欢迎转发!谢谢大家!

相关推荐
九河云12 小时前
华为云ECS与Flexus云服务器X实例:差异解析与选型指南
大数据·运维·服务器·网络·人工智能·华为云
AI优秘企业大脑12 小时前
如何提升自动化业务流程的效率?
大数据·人工智能
这张生成的图像能检测吗12 小时前
(论文速读)视觉语言模型的无遗忘学习
人工智能·深度学习·计算机视觉·clip·持续学习·灾难性遗忘
杰克逊的日记12 小时前
LLM(大语言模型)
人工智能·语言模型·自然语言处理
夏文强12 小时前
HarmonyOS开发-系统AI视觉能力-图片识别
人工智能·华为·harmonyos
胡耀超12 小时前
通往AGI的模块化路径:一个可能的技术架构(同时解答微调与RAG之争)
人工智能·python·ai·架构·大模型·微调·agi
说私域13 小时前
定制开发AI智能名片S2B2C商城小程序的发展与整合资源策略研究
人工智能·小程序
落羽的落羽13 小时前
【C++】现代C++的新特性constexpr,及其在C++14、C++17、C++20中的进化
linux·c++·人工智能·学习·机器学习·c++20·c++40周年
User_芊芊君子13 小时前
【深入浅出】:人工智能从入门到实战
人工智能
zzZ656513 小时前
用 PyTorch 训练 NestedUNet 分割细胞核
计算机视觉