故障识别 | GADF-CNN-SSA-XGBoost数据分类预测/故障识别(Matlab)

故障识别 | GADF-CNN-SSA-XGBoost数据分类预测/故障识别(Matlab)

目录

分类效果




基本描述

格拉姆角场差(GADF)转换:

格拉姆角场差是一种时频分析方法,能够捕捉时间序列数据中的动态特性和内在结构。

将一维故障数据信号转换为二维图像,使得时间序列的复杂特征在二维空间中得以体现。

这种转换有助于后续利用图像处理技术进行特征提取和分类。

图像降维处理:

对GADF图像进行降维处理,以减少数据维度,降低计算复杂度。

二维卷积神经网络(CNN)特征提取:

将降维后的GADF图像输入二维CNN进行自适应特征提取。

CNN能够自动学习图像中的特征,并提取出对分类任务有用的信息。

全连接层的结果作为后续分类器的输入。

Xgboost分类器:

Xgboost是一种高效的集成学习算法,能够处理分类和回归任务。

利用CNN提取的特征作为Xgboost分类器的输入,进行故障分类。

参数优化:

采用经典优化算法(如网格搜索、随机搜索、贝叶斯优化等)对Xgboost分类器的五个关键参数进行优化。

这些参数包括树木个数、树的深度、子节点的最小权重和、学习率和样本比例。

实验分析

数据集:实验基于东南大学的齿轮箱数据展开。

准确率:实验结果表明,该方法诊断效率可以达到98%以上的准确率。

优势:

结合了时频分析、深度学习和集成学习的优势,提高了故障诊断的准确性和效率。

适用于复杂机械系统的故障诊断,如齿轮箱等。

能够自动学习并提取故障特征,减少了人工特征提取的依赖。

结论

方法结合了多种先进技术,实现了对齿轮箱等机械系统故障的高效诊断。实验结果表明,该方法具有很高的准确率,为机械系统的故障诊断提供了一种新的有效途径。未来,可以进一步探索不同时频分析方法、深度学习模型和参数优化算法的组合,以进一步提高故障诊断的准确性和效率。

程序设计

  • 完整程序和数据私信博主回复GADF-CNN-SSA-XGBoost数据分类预测/故障识别
clike 复制代码
%%  参数设置
%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);

% %%  数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
% 
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);

%%  性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;

%%  绘图
figure()         
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid


figure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid

%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
    
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
CM莫问3 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别
赛丽曼5 小时前
机器学习-分类算法评估标准
人工智能·机器学习·分类
机器学习之心13 小时前
GA-CNN-LSTM-Attention、CNN-LSTM-Attention、GA-CNN-LSTM、CNN-LSTM四模型多变量时序预测一键对比
人工智能·cnn·lstm·cnn-lstm·ga-cnn-lstm
坐吃山猪1 天前
机器学习10-解读CNN代码Pytorch版
pytorch·机器学习·cnn
池央1 天前
DCGAN - 深度卷积生成对抗网络:基于卷积神经网络的GAN
深度学习·生成对抗网络·cnn
paradoxjun1 天前
落地级分类模型训练框架搭建(1):resnet18/50和mobilenetv2在CIFAR10上测试结果
人工智能·深度学习·算法·计算机视觉·分类
机器学习之心2 天前
回归预测 | MATLAB基于TCN-BiGRU时间卷积神经网络结合双向门控循环单元多输入单输出回归预测
matlab·回归·多输入单输出回归预测·cnn·tcn-bigru·时间卷积双向门控循环单元
那年一路北2 天前
PyTorch 卷积神经网络全解析:从原理到实践
人工智能·pytorch·cnn
董董灿是个攻城狮3 天前
023:到底什么是感受野?
人工智能·计算机视觉·cnn
L-含光承影3 天前
【第二十周】U-Net:用于生物图像分割的卷积神经网络
人工智能·神经网络·cnn