JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

目录

预测效果








基本介绍

1.中科院一区牛顿-拉夫逊优化优化算法+分解组合对比!VMD-NRBO-Transformer-BiLSTM多变量时间序列光伏功率预测,变分模态分解+牛顿-拉夫逊优化算法Transformer结合双向长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);

牛顿-拉夫逊优化算法算法(Newton-Raphson-based optimizer,NRBO)是一种全新的元启发式优化方法,其灵感来源主要基于两个关键原理:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO)。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到改进的搜索空间位置。TAO有助于NRBO避免局部最优陷阱。NRBO具有进化能力强、搜索速度快、寻优能力强的特点。这一成果由Sowmya等人于2024年2月发表在中科院2区顶级SCI期刊《Engineering Applications of Artificial Intelligence》上。。

2.算法优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;

3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

先运行main1VMD,进行vmd分解;再运行main2NRBOTransformerBiLSTM,四个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。


程序设计

  • 完整源码和数据获取方式私信回复JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测
clike 复制代码
X = xlsread('北半球光伏数据.xlsx','C2:E296');

save origin_data X

L=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样

%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);



%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
zc.ovo9 分钟前
图论水题日记
算法·深度优先·图论
某个默默无闻奋斗的人17 分钟前
【矩阵专题】Leetcode48.旋转图像(Hot100)
java·算法·leetcode
℡余晖^22 分钟前
每日面试题14:CMS与G1垃圾回收器的区别
java·jvm·算法
圆头猫爹1 小时前
洛谷刷题7.24
数据结构·算法
hhhh明1 小时前
广义优势估计的推导
算法
果味哈哈笑1 小时前
斐波那契数(快速幂计算的推理过程)
算法
刚入坑的新人编程1 小时前
暑期算法训练.8
数据结构·c++·算法·面试·哈希算法
花火|2 小时前
算法训练营day28 贪心算法②122.买卖股票的最佳时机II、55. 跳跃游戏、 45.跳跃游戏II 、1005.K次取反后最大化的数组和
算法·贪心算法
停走的风2 小时前
Yolo底层原理学习(V1~V3)(第一篇)
人工智能·深度学习·神经网络·学习·yolo
Morriser莫2 小时前
动态规划Day1学习心得
算法·动态规划