JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

目录

预测效果








基本介绍

1.中科院一区牛顿-拉夫逊优化优化算法+分解组合对比!VMD-NRBO-Transformer-BiLSTM多变量时间序列光伏功率预测,变分模态分解+牛顿-拉夫逊优化算法Transformer结合双向长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);

牛顿-拉夫逊优化算法算法(Newton-Raphson-based optimizer,NRBO)是一种全新的元启发式优化方法,其灵感来源主要基于两个关键原理:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO)。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到改进的搜索空间位置。TAO有助于NRBO避免局部最优陷阱。NRBO具有进化能力强、搜索速度快、寻优能力强的特点。这一成果由Sowmya等人于2024年2月发表在中科院2区顶级SCI期刊《Engineering Applications of Artificial Intelligence》上。。

2.算法优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;

3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

先运行main1VMD,进行vmd分解;再运行main2NRBOTransformerBiLSTM,四个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。


程序设计

  • 完整源码和数据获取方式私信回复JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测
clike 复制代码
X = xlsread('北半球光伏数据.xlsx','C2:E296');

save origin_data X

L=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样

%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);



%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
m0_751336391 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
拓端研究室2 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安4 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
有Li4 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
IT古董4 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
水木兰亭7 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
张较瘦_8 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1238 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷8 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
Jess078 小时前
插入排序的简单介绍
数据结构·算法·排序算法