基于yolov8的SAR影像目标检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】

更多目标检测、图像分类识别、目标追踪等项目可看我主页其他文章

功能演示:

基于yolov8的SAR影像目标检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】_哔哩哔哩_bilibili

(一)简介

基于yolov8的SAR影像目标检测系统在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,GUI界面和各种模型指标(准确率、精确率、召回率等)等。

GUI界面由pyqt5设计实现,可用笔记本摄像头或者外接USB摄像头

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

超详细的pycharm+anaconda搭建python虚拟环境_pycharm anaconda环境搭建-CSDN博客

(二)项目介绍

1. 模型训练、验证

​该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单:

第一步:修改data/data.yaml中的数据集路径

​​

第二步:模型训练与验证,即运行train.py文件

第三步:使用模型,即运行gui.py文件即可通过GUI界面来展示模型效果

2. 数据集

​​​​​

部分数据展示:

​​​​

3.GUI界面(技术栈:pyqt5+python)
a.GUI初始界面

b.图像检测界面

​​

c.视频或摄像实时检测界面

​​

4.模型训练和验证的一些指标及效果

​​

​​

​​

(三)代码

由于篇幅有限,只展示核心代码

python 复制代码
    def upload_img(self):
        """上传图片"""
        # 选择录像文件进行读取
        self.comboBox.setDisabled(False)
        self.pushButton_4.setEnabled(False)
        # 上传图像
        fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.jpg *.png *.tif *.jpeg')
        if fileName:
            self.file_path = fileName
            """检测图片"""
            org_path = self.file_path
            # 目标检测
            t1 = time.time()
            # 图像检测
            results = self.model.predict(source=org_path, imgsz=self.output_size, conf=self.conf_threshold)[0]
            names = results.names
            t2 = time.time()
            self.label_6.setText('{:.3f} s'.format(t2 - t1))
            now_img = results.plot()
            # 调整图像大小
            self.resize_scale = self.output_size / now_img.shape[0]
            im0 = cv2.resize(now_img, (0, 0), fx=self.resize_scale, fy=self.resize_scale)
            cv2.imwrite("images/tmp/single_result.jpg", im0)
            # 自适应图像大小
            self.label_3.setScaledContents(True)
            # 显示图像
            self.label_3.setPixmap(QPixmap("images/tmp/single_result.jpg"))
            # 获取位置信息
            location_list = results.boxes.xyxy.tolist()
            location_list = [list(map(int, e)) for e in location_list]
            # 获取类别信息
            cls_list = results.boxes.cls.tolist()
            cls_list = [int(i) for i in cls_list]
            # 获取置信度信息
            conf_list = results.boxes.conf.tolist()
            conf_list = ['%.2f %%' % (each * 100) for each in conf_list]
            # 目标总数
            total_nums = len(location_list)
            self.label_11.setText(str(total_nums))
            choose_list = ['全部']
            target_names = [names[id] + '_' + str(index) for index, id in enumerate(cls_list)]
            choose_list = choose_list + target_names
            # 复合框信息
            self.comboBox.clear()
            self.comboBox.addItems(choose_list)

            self.results = results
            self.names = names
            self.cls_list = cls_list
            self.conf_list = conf_list
            self.location_list = location_list
            
            # 显示目标框
            if total_nums >= 1:
                # 渲染类别和置信度信息
                self.label_16.setText(names[cls_list[0]])
                self.label_15.setText(str(conf_list[0]))
                #   默认显示第一个目标框坐标
                #   设置坐标位置值
                self.label_13.setText(str(location_list[0][0]))
                self.label_19.setText(str(location_list[0][1]))
                self.label_21.setText(str(location_list[0][2]))
                self.label_23.setText(str(location_list[0][3]))
            else:
                # 清空显示框
                self.label_16.setText(' ')
                self.label_15.setText(' ')
                self.label_13.setText(' ')
                self.label_19.setText(' ')
                self.label_21.setText(' ')
                self.label_23.setText(' ')

(四)总结

以上即为整个项目的介绍,完整的项目包括代码,数据集,训练好的模型权重,模型训练记录,GUI界面和各种模型指标等

整个项目包含全部资料,一步到位,省心省力

若项目使用过程中出现问题,请及时交流!

相关推荐
我想进大厂4 小时前
Python---数据容器(Set 集合)
开发语言·python
chenchihwen5 小时前
AI代码开发宝库系列:LangChain 工具链:从LCEL到实际应用
人工智能·python·langchain·rag
TwoAnts&DingJoy5 小时前
数据分析-数据沙箱
人工智能·python·安全·数据分析·数据沙箱
wu_jing_sheng05 小时前
销售数据分析
开发语言·python
风向玩家5 小时前
不放回抽样_生成不重样菜单
python
程序员小远5 小时前
Postman接口测试: Postman环境变量&全局变量设置,多接口顺序执行详解
自动化测试·软件测试·python·测试工具·测试用例·接口测试·postman
程序员三藏5 小时前
Postman定义公共函数
自动化测试·软件测试·python·测试工具·测试用例·接口测试·postman
zhan1145146 小时前
解析平面卷积/pytorch的nn.Conv2d的计算步骤,in_channels与out_channels如何计算而来
人工智能·pytorch·深度学习·cnn·卷积神经网络
小麦果汁吨吨吨6 小时前
Python:word(doc、docx)批量转pdf
python
深蓝电商API6 小时前
异步爬虫的终极形态:aiohttp + asyncio 实现万级并发实践
爬虫·python·aiohttp