【Spark】Spark为什么比MapReduce更高效?

Spark为什么比MapReduce更高效?

1. 内存计算 vs 磁盘计算
  • Spark:a.Spark通过RDD将数据存储在内存中,操作可以直接在内存中进行计算。只有在内存不足时,Spark才会将数据写入磁盘,从而减少了磁盘I/O,显著提高了性能。b.同一Stage内所有算子融合为一个函数,Stage的输出结果由这个函数一次性作用在输入数据集而产生。
  • MapReduce:每个Map和Reduce阶段的中间结果都必须写入磁盘,再从磁盘读取。这会导致磁盘I/O操作非常频繁,降低了性能。每个任务的输出必须先写入HDFS(或本地文件系统),然后再作为输入传递给后续的任务。
2. DAG调度 vs 阶段化调度
  • Spark:Spark使用DAG(有向无环图)调度来表示整个计算过程,Spark的执行引擎可以基于DAG优化任务调度,自动选择最优的执行策略。这样不仅能减少计算的重复,还能优化中间结果的存储和调度,使得作业的执行更加高效。
  • MapReduce:MapReduce使用简单的阶段化执行,Map阶段完成后,Reduce阶段才开始。每个Map和Reduce任务都是独立的,并且通过磁盘中间结果进行连接,导致调度效率较低。
3. 线程模型 vs 进程模型
  • Spark:Spark采用了多线程模型,通过复用线程池中的线程来减少启动和关闭任务的开销。
  • MapReduce:MapReduce采用多进程模型,每次任务启动都需要重新申请资源,消耗不必要的时间。
4. 数据重用与缓存
  • Spark :Spark支持数据的持久化(例如,通过cachepersist方法将数据保存在内存中),允许用户对中间结果进行缓存,并在多个操作中重用。这个特性使得Spark在执行需要重复计算的任务时能够显著提升性能。
  • MapReduce:在MapReduce中,任务每完成一次,就需要将结果写入磁盘,无法直接重用中间结果。
5. 优化机制
  • Spark:Spark内置了多种优化机制,如Catalyst优化器和Tungsten执行引擎,提升查询和执行效率。
  • MapReduce:缺乏类似的高级优化机制。
6. 序列化方式
  • Spark:Spark可以使用轻量级的Kryo序列化,在数据传输和存储上更高效。
  • MapReduce:使用Java序列化,占用的内存较大,传输和存储的开销较高。
7. 丰富的操作API
  • Spark :Spark提供了丰富的API,支持复杂的转换(如mapfilterreduceByKey等)和行动操作(如collectcount等),并且支持多种数据源(如HDFS、S3、HBase、Cassandra等)。这些API高度抽象化并经过优化,使得Spark的开发更加灵活、高效。
  • MapReduce:MapReduce仅支持基本的Map和Reduce操作,扩展起来需要很多额外的工作。
8. shuffle排序
  • Spark:Spark在Shuffle时部分场景可通过Bypass机制跳过排序,更省时。
  • MapReduce:MapReduce在Shuffle时需要花费大量时间进行排序。
相关推荐
晟诺数字人8 分钟前
数字人短视频引流获客攻略
大数据·人工智能
Elastic 中国社区官方博客12 分钟前
使用 Elastic Agent Builder 和 MCP 实现 Agentic 参考架构
大数据·人工智能·elasticsearch·搜索引擎·ai·架构·全文检索
麦兜*19 分钟前
Spring Boot 整合 Apache Doris:实现海量数据实时OLAP分析实战
大数据·spring boot·后端·spring·apache
云启数智YQ19 分钟前
深入解析云桌面:定义、主流方案与行业实践
大数据
档案宝档案管理20 分钟前
权限分级+加密存储+操作追溯,筑牢会计档案安全防线
大数据·网络·人工智能·安全·档案·档案管理
武子康25 分钟前
大数据-207 如何应对多重共线性:使用线性回归中的最小二乘法时常见问题与解决方案
大数据·后端·机器学习
天远云服31 分钟前
拒绝性能瓶颈:使用Go协程高效清洗天远多头借贷行业风险数据
大数据·api
天远数科34 分钟前
前端体验优化:如何用Node.js清洗天远多头借贷行业风险版的海量指标
大数据·api
天远数科35 分钟前
Node.js全栈实战:构建基于天远多头借贷行业风险版API的BFF风控层
大数据·node.js
RPA机器人就选八爪鱼42 分钟前
RPA财务机器人选型攻略:5步搭建高性价比自动化体系
大数据·人工智能·机器人·自动化·rpa