【Spark】Spark为什么比MapReduce更高效?

Spark为什么比MapReduce更高效?

1. 内存计算 vs 磁盘计算
  • Spark:a.Spark通过RDD将数据存储在内存中,操作可以直接在内存中进行计算。只有在内存不足时,Spark才会将数据写入磁盘,从而减少了磁盘I/O,显著提高了性能。b.同一Stage内所有算子融合为一个函数,Stage的输出结果由这个函数一次性作用在输入数据集而产生。
  • MapReduce:每个Map和Reduce阶段的中间结果都必须写入磁盘,再从磁盘读取。这会导致磁盘I/O操作非常频繁,降低了性能。每个任务的输出必须先写入HDFS(或本地文件系统),然后再作为输入传递给后续的任务。
2. DAG调度 vs 阶段化调度
  • Spark:Spark使用DAG(有向无环图)调度来表示整个计算过程,Spark的执行引擎可以基于DAG优化任务调度,自动选择最优的执行策略。这样不仅能减少计算的重复,还能优化中间结果的存储和调度,使得作业的执行更加高效。
  • MapReduce:MapReduce使用简单的阶段化执行,Map阶段完成后,Reduce阶段才开始。每个Map和Reduce任务都是独立的,并且通过磁盘中间结果进行连接,导致调度效率较低。
3. 线程模型 vs 进程模型
  • Spark:Spark采用了多线程模型,通过复用线程池中的线程来减少启动和关闭任务的开销。
  • MapReduce:MapReduce采用多进程模型,每次任务启动都需要重新申请资源,消耗不必要的时间。
4. 数据重用与缓存
  • Spark :Spark支持数据的持久化(例如,通过cachepersist方法将数据保存在内存中),允许用户对中间结果进行缓存,并在多个操作中重用。这个特性使得Spark在执行需要重复计算的任务时能够显著提升性能。
  • MapReduce:在MapReduce中,任务每完成一次,就需要将结果写入磁盘,无法直接重用中间结果。
5. 优化机制
  • Spark:Spark内置了多种优化机制,如Catalyst优化器和Tungsten执行引擎,提升查询和执行效率。
  • MapReduce:缺乏类似的高级优化机制。
6. 序列化方式
  • Spark:Spark可以使用轻量级的Kryo序列化,在数据传输和存储上更高效。
  • MapReduce:使用Java序列化,占用的内存较大,传输和存储的开销较高。
7. 丰富的操作API
  • Spark :Spark提供了丰富的API,支持复杂的转换(如mapfilterreduceByKey等)和行动操作(如collectcount等),并且支持多种数据源(如HDFS、S3、HBase、Cassandra等)。这些API高度抽象化并经过优化,使得Spark的开发更加灵活、高效。
  • MapReduce:MapReduce仅支持基本的Map和Reduce操作,扩展起来需要很多额外的工作。
8. shuffle排序
  • Spark:Spark在Shuffle时部分场景可通过Bypass机制跳过排序,更省时。
  • MapReduce:MapReduce在Shuffle时需要花费大量时间进行排序。
相关推荐
编程彩机1 小时前
互联网大厂Java面试:从Java SE到大数据场景的技术深度解析
java·大数据·spring boot·面试·spark·java se·互联网大厂
不是很大锅2 小时前
卸载TDengine
大数据·时序数据库·tdengine
qyr67892 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
2501_944934733 小时前
工业大数据方向,CDA证书和工业数据工程师证哪个更实用?
大数据
迎仔5 小时前
04-快反部队:Impala, Presto & Trino 通俗指南
大数据
BYSJMG5 小时前
计算机毕业设计选题推荐:基于大数据的肥胖风险分析与可视化系统详解
大数据·vue.js·数据挖掘·数据分析·课程设计
yqd6665 小时前
elasticsearch
大数据·elasticsearch·搜索引擎
Leo.yuan6 小时前
经营分析会,该讲些什么?
大数据·数据库·数据分析
GIS数据转换器6 小时前
基于AI的低空数联无人机智慧巡查平台
大数据·人工智能·机器学习·无人机·宠物
跨境摸鱼6 小时前
用“内容+投放+运营”打出增长曲线
大数据·安全·跨境电商·亚马逊·内容营销