李宏毅机器学习深度学习:机器学习任务攻略

课程概要

介绍了当我们遇到模型效果(loss)不理想时,进行模型优化的分析方法和思路。

Part 1> 原因分析

可能的原因:

  • 数据集标签不够(标签之间的因果关联性不强)

  • 模型简单(神经元层数不够)

  • 优化问题(optimization)

  • 训练过拟合 (ovefiting)

  • 训练集和测试集 统计学数据分布不匹配(mismatch)

判断方法

是不是训练集和测试集mismatch

训练集如果loss很低,但测试集loss高,则可以分析 训练集和测试集的区别

mismatch的情况示例:

e.g.1 用动物园的图像分类模型,识别野生动物

e.g.2 用亚洲人的特征识别模型,识别欧洲人的特征

是不是过拟合

训练集如果loss很低,但测试集loss高,且不太可能是mismatch的情况,说明很可能是过拟合

模型简单

加了神经元,没有优化效果:加了神经元,训练集和测试集的loss依然很高

则排除是模型简单的原因;

是不是optimization问题

不是上述两个,则可能是optimization

Part 2> 解决思路

应对overfiting:

方法一:增加/丰富数据集

  • 收集真实数据

  • 通过小样本扩增法(e.g. 图像左右反转、镜像等合理调整)

方法二:增加限制条件

  • 简化模型------减少参数

  • 减少关联性较少的标签(features)

  • 减少训练次数

  • 【预告】regularization数据归一化处理

  • 简化模型------减少少神经元(dropout)

  • 【预告】全连接网络、CNN部分讲

Part 3> 验证效果

通过公开数据集、私有数据集和自己的数据集中划分出的validtion set验证。

public数据集验证:

目的:公众说服力

示例:MINST手写数字

private数据集验证:

目的:公众说服力 / 领域内说服力。

示例:医患数据集(医患数据涉及病人隐私,常为非公开数据集)

validation数据集验证:

目的:证明神经网络/模型结构设计合理性、可解释性(逻辑自洽);也可以证明 泛用性(可迁移性)通用性

方法:validation 数据集划分(N-flod Cross法划分, "交叉验证"取平均值)

图为N-flod中N为3的示例。

相关推荐
Testopia1 分钟前
AI与敏捷开发管理1:传统方法失灵?人工智能项目的新法则
人工智能·项目管理·敏捷开发·敏捷流程
倔强青铜三3 分钟前
苦练Python第60天:json模块——让Python和JSON“无缝互译”的神兵利器
人工智能·python·面试
Ivanqhz1 小时前
LR算法中反向最右推导(Reverse RightMost Derivation)
人工智能·算法
whltaoin1 小时前
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
人工智能·spring·阿里云·向量数据库·rag
sheji34161 小时前
【开题答辩全过程】以 Web数据挖掘在电子商务中的应用研究为例,包含答辩的问题和答案
前端·人工智能·数据挖掘
진영_1 小时前
Transformer(一)---背景介绍及架构介绍
人工智能·深度学习·transformer
zzywxc7871 小时前
AI赋能千行百业:金融、医疗、教育、制造业的落地实践与未来展望
java·人工智能·python·microsoft·金融·golang·prompt
星楠_0012 小时前
logits和softmax分布
人工智能·python·深度学习
大千AI助手2 小时前
二元锦标赛:进化算法中的选择机制及其应用
人工智能·算法·优化·进化算法·二元锦标赛·选择机制·适应生存
IT_陈寒2 小时前
Python开发者必坑指南:3个看似聪明实则致命的‘优化’让我损失了50%性能
前端·人工智能·后端