李宏毅机器学习深度学习:机器学习任务攻略

课程概要

介绍了当我们遇到模型效果(loss)不理想时,进行模型优化的分析方法和思路。

Part 1> 原因分析

可能的原因:

  • 数据集标签不够(标签之间的因果关联性不强)

  • 模型简单(神经元层数不够)

  • 优化问题(optimization)

  • 训练过拟合 (ovefiting)

  • 训练集和测试集 统计学数据分布不匹配(mismatch)

判断方法

是不是训练集和测试集mismatch

训练集如果loss很低,但测试集loss高,则可以分析 训练集和测试集的区别

mismatch的情况示例:

e.g.1 用动物园的图像分类模型,识别野生动物

e.g.2 用亚洲人的特征识别模型,识别欧洲人的特征

是不是过拟合

训练集如果loss很低,但测试集loss高,且不太可能是mismatch的情况,说明很可能是过拟合

模型简单

加了神经元,没有优化效果:加了神经元,训练集和测试集的loss依然很高

则排除是模型简单的原因;

是不是optimization问题

不是上述两个,则可能是optimization

Part 2> 解决思路

应对overfiting:

方法一:增加/丰富数据集

  • 收集真实数据

  • 通过小样本扩增法(e.g. 图像左右反转、镜像等合理调整)

方法二:增加限制条件

  • 简化模型------减少参数

  • 减少关联性较少的标签(features)

  • 减少训练次数

  • 【预告】regularization数据归一化处理

  • 简化模型------减少少神经元(dropout)

  • 【预告】全连接网络、CNN部分讲

Part 3> 验证效果

通过公开数据集、私有数据集和自己的数据集中划分出的validtion set验证。

public数据集验证:

目的:公众说服力

示例:MINST手写数字

private数据集验证:

目的:公众说服力 / 领域内说服力。

示例:医患数据集(医患数据涉及病人隐私,常为非公开数据集)

validation数据集验证:

目的:证明神经网络/模型结构设计合理性、可解释性(逻辑自洽);也可以证明 泛用性(可迁移性)通用性

方法:validation 数据集划分(N-flod Cross法划分, "交叉验证"取平均值)

图为N-flod中N为3的示例。

相关推荐
zenRRan2 分钟前
Qwen2.5-VL Technical Report!!! 操作手机电脑、解析化学公式和乐谱、剪辑电影等,妥妥六边形战士 !...
人工智能
让我安静会11 分钟前
Obsidian·Copilot 插件配置(让AI根据Obsidian笔记内容进行对话)
人工智能·笔记·copilot
Allen_LVyingbo16 分钟前
Scrum方法论指导下的Deepseek R1医疗AI部署开发
人工智能·健康医疗·scrum
Watermelo61731 分钟前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink33 分钟前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计39 分钟前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类
Ainnle1 小时前
企业级RAG开源项目分享:Quivr、MaxKB、Dify、FastGPT、RagFlow
人工智能·开源
小天努力学java1 小时前
AI赋能传统系统:Spring AI Alibaba如何用大模型重构机票预订系统?
人工智能·spring
北_鱼1 小时前
支持向量机(SVM):算法讲解与原理推导
算法·机器学习·支持向量机
Fuweizn2 小时前
在工业生产中,物料搬运环节至关重要,搬运机器人开启新篇章
人工智能·智能机器人·复合机器人