李宏毅机器学习深度学习:机器学习任务攻略

课程概要

介绍了当我们遇到模型效果(loss)不理想时,进行模型优化的分析方法和思路。

Part 1> 原因分析

可能的原因:

  • 数据集标签不够(标签之间的因果关联性不强)

  • 模型简单(神经元层数不够)

  • 优化问题(optimization)

  • 训练过拟合 (ovefiting)

  • 训练集和测试集 统计学数据分布不匹配(mismatch)

判断方法

是不是训练集和测试集mismatch

训练集如果loss很低,但测试集loss高,则可以分析 训练集和测试集的区别

mismatch的情况示例:

e.g.1 用动物园的图像分类模型,识别野生动物

e.g.2 用亚洲人的特征识别模型,识别欧洲人的特征

是不是过拟合

训练集如果loss很低,但测试集loss高,且不太可能是mismatch的情况,说明很可能是过拟合

模型简单

加了神经元,没有优化效果:加了神经元,训练集和测试集的loss依然很高

则排除是模型简单的原因;

是不是optimization问题

不是上述两个,则可能是optimization

Part 2> 解决思路

应对overfiting:

方法一:增加/丰富数据集

  • 收集真实数据

  • 通过小样本扩增法(e.g. 图像左右反转、镜像等合理调整)

方法二:增加限制条件

  • 简化模型------减少参数

  • 减少关联性较少的标签(features)

  • 减少训练次数

  • 【预告】regularization数据归一化处理

  • 简化模型------减少少神经元(dropout)

  • 【预告】全连接网络、CNN部分讲

Part 3> 验证效果

通过公开数据集、私有数据集和自己的数据集中划分出的validtion set验证。

public数据集验证:

目的:公众说服力

示例:MINST手写数字

private数据集验证:

目的:公众说服力 / 领域内说服力。

示例:医患数据集(医患数据涉及病人隐私,常为非公开数据集)

validation数据集验证:

目的:证明神经网络/模型结构设计合理性、可解释性(逻辑自洽);也可以证明 泛用性(可迁移性)通用性

方法:validation 数据集划分(N-flod Cross法划分, "交叉验证"取平均值)

图为N-flod中N为3的示例。

相关推荐
蝎蟹居14 分钟前
GB/T 4706.1-2024 家用和类似用途电器的安全 第1部分:通用要求 与2005版差异(1)
人工智能·单片机·嵌入式硬件·物联网·安全
浊酒南街21 分钟前
TensorFlow实现逻辑回归
人工智能·tensorflow·逻辑回归
云卓SKYDROID31 分钟前
无人机遥测系统工作与技术难点分析!
人工智能·无人机·科普·高科技·云卓科技
Start_Present36 分钟前
Pytorch 第十三回:神经网络编码器——自动编解码器
pytorch·python·深度学习·神经网络
databook37 分钟前
线性模型与多分类问题:简单高效的力量
python·机器学习·scikit-learn
Moutai码农39 分钟前
大模型-提示词(Prompt)技巧
人工智能·语言模型·prompt
Moutai码农42 分钟前
大模型-提示词(Prompt)最佳实践
人工智能·语言模型·prompt
阿巴阿巴拉43 分钟前
Scala简介与基础语法学习总结
人工智能
zxsz_com_cn1 小时前
风电行业预测性维护解决方案:AIoT驱动下的风机健康管理革命
大数据·运维·人工智能