opencv阈值操作

ret, dst = cv2.threshold(src, thresh, maxval, type)

·src: 输入图,只能输入单通道图像,通常来说为灰度图

·dst: 输出图

·thresh: 阈值

·maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值

·type: 二值化操作的类型,包含以下5种类型:cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO; cv2.THRESH_TOZERO_INV

·cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0

·cv2.THRESH_BINARY_INV THRESH_BINARY的反转

·cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变

·cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0

·cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

python 复制代码
# 导入OpenCV库,用于图像处理  
import cv2  
# 从matplotlib库中导入pyplot模块,用于绘制图像  
from matplotlib import pyplot as plt  
  
# 创建一个名为'window'的窗口,窗口大小自动调整  
cv2.namedWindow('window', cv2.WINDOW_AUTOSIZE)  # cv2.WINDOW_AUTOSIZE: 窗口大小自动调整,不允许用户改变窗口大小  
  
# 使用OpenCV的imread函数读取名为"mao.jpg"的图片,参数1表示读取彩色图像  
cat = cv2.imread("mao.jpg", 1)  # cat变量存储读取的图像数据,OpenCV默认以BGR格式读取  
  
# 在名为'window'的窗口中显示图像  
cv2.imshow('window', cat)  
  
# 对图像进行二值化处理,使用不同的阈值类型  
ret, thresh1 = cv2.threshold(cat, 127, 255, cv2.THRESH_BINARY)  # 二进制阈值  
ret, thresh2 = cv2.threshold(cat, 127, 255, cv2.THRESH_BINARY_INV)  # 反二进制阈值  
ret, thresh3 = cv2.threshold(cat, 127, 255, cv2.THRESH_TRUNC)  # 截断阈值  
ret, thresh4 = cv2.threshold(cat, 127, 255, cv2.THRESH_TOZERO)  # 阈值化为0  
ret, thresh5 = cv2.threshold(cat, 127, 255, cv2.THRESH_TOZERO_INV)  # 反阈值化为0  
  
# 定义图像标题列表  
titles = ['Original Image', 'Binary Image', 'THRESH_BINARY_INV', 'THRESH_TRUNC', 'THRESH_TOZERO', 'THRESH_TOZERO_INV']  
  
# 定义图像列表  
images = [cat, thresh1, thresh2, thresh3, thresh4, thresh5]  
  
# 使用matplotlib绘制所有图像及其标题  
for i in range(6):  
    # 创建子图,2行3列,当前位置为i+1  
    plt.subplot(2, 3, i+1)  
    # 显示图像,使用灰度颜色映射  
    plt.imshow(images[i], 'gray')  
    # 设置子图标题  
    plt.title(titles[i])  
    # 隐藏x轴和y轴的刻度  
    plt.xticks([]), plt.yticks([])  
  
# 显示所有子图  
plt.show()  
  
# 等待按键事件,0表示无限期等待  
key = cv2.waitKey(0)  
  
# 检查按下的键是否是'q',如果是则销毁所有窗口  
if key & 0xFF == ord('q'):  # 0xFF是掩码,用于确保只检查最低8位  
    print("准备销毁窗口")  
    cv2.destroyAllWindows()

效果展示

相关推荐
薛定谔的猫19823 分钟前
二十一、基于 Hugging Face Transformers 实现中文情感分析情感分析
人工智能·自然语言处理·大模型 训练 调优
发哥来了10 分钟前
《AI视频生成技术原理剖析及金管道·图生视频的应用实践》
人工智能
数智联AI团队22 分钟前
AI搜索引领开源大模型新浪潮,技术创新重塑信息检索未来格局
人工智能·开源
不懒不懒35 分钟前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜6001 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
Ryan老房1 小时前
未来已来-AI标注工具的下一个10年
人工智能·yolo·目标检测·ai
丝斯20112 小时前
AI学习笔记整理(66)——多模态大模型MOE-LLAVA
人工智能·笔记·学习
小鸡吃米…2 小时前
机器学习中的代价函数
人工智能·python·机器学习
HaiLang_IT2 小时前
计算机视觉选题指南(2026版):图像分类、目标检测、分割等热门方向详解
计算机视觉·分类·课程设计
chatexcel3 小时前
元空AI+Clawdbot:7×24 AI办公智能体新形态详解(长期上下文/自动化任务/工具粘合)
运维·人工智能·自动化