Pytorch分布式训练print()使用技巧

在分布式训练场景中,有时我们可能会需要使用print函数(虽然大部分情况下大多会用logging进行信息输出)在终端打印相关信息。但由于同时运行多个进程,如果不进行限制,每个进程都会打印信息,不但影响观感,而且可能会造成阻塞。

通常的解决方法是利用if条件语句进行限制,只在主进程中进行打印,如下:

python 复制代码
# 当前为主进程
if args.rank == 0:
    print('Train message')

但最近在学习目标检测模型DINO源码时,我发现作者采用重写内置print函数 的方式实现了相同的功能,即只在主进程中启用print函数,在其他进程中禁用print函数。

函数源码如下:

python 复制代码
def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__

    # 得到内置的print函数
    builtin_print = __builtin__.print

    
    # 重写print函数
    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        # 在主进程或者强制条件下才调用内置print输出
        if is_master or force:
            builtin_print(*args, **kwargs)

    # 用重写后的print函数替换内置的print函数
    __builtin__.print = print

该方法具体的调用位置是在初始化多进程组之后,示例如下:

python 复制代码
import torch

args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.dist_backend = 'nccl'
args.dist_url = 'env://'
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
# 只在主进程启用print
setup_for_distributed(args.rank == 0)

实测好用,且思路清奇,果然学习永无止境。在此做一个学习记录,也分享给需要的人。

相关推荐
白-胖-子1 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手2 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
mortimer2 小时前
安装NVIDIA Parakeet时,我遇到的两个Pip“小插曲”
python·github
@昵称不存在3 小时前
Flask input 和datalist结合
后端·python·flask
静心问道3 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.03 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
赵英英俊3 小时前
Python day25
python
东林牧之3 小时前
Django+celery异步:拿来即用,可移植性高
后端·python·django
何双新3 小时前
基于Tornado的WebSocket实时聊天系统:从零到一构建与解析
python·websocket·tornado
小楓12014 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業