OpenCV实验篇:识别图片颜色并绘制轮廓

第三篇:识别图片颜色并绘制轮廓

1. 实验原理

颜色识别的原理:

  • 颜色在图像处理中通常使用 HSV 空间来表示。

    • HSV 空间是基于人类视觉系统的一种颜色模型,其中:

      • H(Hue):色调,表示颜色的种类,例如红色、绿色。

      • S(Saturation):饱和度,表示颜色的纯度。

      • V(Value):明度,表示颜色的亮度。

    • 使用 HSV 空间分割颜色比直接使用 RGB 空间更加直观且效果更好。

轮廓绘制的原理:

  • 轮廓是指图像中具有相同颜色或灰度值的边界。

  • 在 OpenCV 中,通过以下步骤实现轮廓绘制:

    1. 转换图像到 HSV 空间,设定颜色阈值,分割出感兴趣区域。

    2. 使用 cv2.findContours 查找轮廓。

    3. 使用 cv2.drawContours 将轮廓绘制在原图或复制图像上。

2. 实验代码

以下是基于 OpenCV 的完整代码:

复制代码
import cv2
import numpy as np

# --------------------1. 读取图像--------------------
# 加载目标图片
image = cv2.imread("./color_1.png")
# 调整图片大小,方便显示和处理
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)

# --------------------2. 转换到 HSV 空间--------------------
# 将图像从 BGR 空间转换到 HSV 空间
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

# --------------------3. 定义颜色阈值范围--------------------
# 定义要识别的颜色范围(以蓝色为例)
# 这里的值需要根据实际颜色进行调整
lower_blue = np.array([100, 150, 50])  # HSV 下界
upper_blue = np.array([140, 255, 255])  # HSV 上界

# 使用 inRange 函数分割颜色区域
mask = cv2.inRange(image_hsv, lower_blue, upper_blue)

# --------------------4. 图像处理--------------------
# 使用形态学操作去除噪点(可选)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
mask_cleaned = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

# --------------------5. 查找轮廓--------------------
# 在掩码图像中查找轮廓
contours, hierarchy = cv2.findContours(mask_cleaned, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# --------------------6. 绘制轮廓--------------------
# 创建一个原始图像的副本,用于绘制轮廓
image_contours = image.copy()
# 在副本上绘制轮廓
cv2.drawContours(image_contours, contours, -1, (0, 255, 0), 3)

# --------------------7. 显示结果--------------------
# 显示原始图像
cv2.imshow("Original Image", image)
# 显示掩码图像
cv2.imshow("Mask", mask_cleaned)
# 显示绘制了轮廓的图像
cv2.imshow("Contours", image_contours)

# 等待按键退出
cv2.waitKey(0)
cv2.destroyAllWindows()
3. 实验现象

实验效果:

  1. 原始图像窗口:显示原始图像。

  2. 掩码窗口:显示分割后的蓝色区域(白色部分为识别的颜色)。

  3. 轮廓绘制窗口:显示绘制了颜色轮廓的图像。

实验总结:

  1. 使用 HSV 空间可以高效地分割颜色区域。

  2. cv2.findContourscv2.drawContours 可以精确提取和标记物体的边界。

  3. 这种方法可以应用在以下场景:

    • 交通标志识别。

    • 物体检测与跟踪。

    • 色彩分类任务。

相关推荐
白-胖-子4 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手5 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道6 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.06 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12016 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师7 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen7 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域7 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木7 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
AntBlack7 小时前
从小不学好 ,影刀 + ddddocr 实现图片验证码认证自动化
后端·python·计算机视觉