电子商务人工智能指南 5/6 - 丰富的产品数据

介绍

81% 的零售业高管表示, AI 至少在其组织中发挥了中等至完全的作用。然而,78% 的受访零售业高管表示,很难跟上不断发展的 AI 格局*。* 近年来,电子商务团队加快了适应新客户偏好和创造卓越数字购物体验的需求。采用 AI 不再是一种选择,而是零售商推动规模增长和保持市场差异化的必要条件。电子商务公司现在正在使用 AI 来创建新的客户参与形式,增强在线结账解决方案,并推动数字商务的经济高效流程。

本指南将全面概述人工智能在电子商务公司的主要应用,并分享 Scale 在零售领域的经验最佳实践。

电子商务人工智能:为什么它很重要?

人工智能对电子商务有多种益处:

增强客户体验: 电子商务的 AI 解决方案可以帮助公司个性化产品推荐、改善搜索结果并更好地了解客户情绪。借助准确的个性化和推荐机器学习模型,公司可以帮助减少购买时间、在产品详细信息页面上准确描述产品并更好地了解客户行为。通过投资准确的 ML 模型,团队可以实现提高购物转化率和提高客户满意度的目标。此外,电子商务公司可以通过删除违反平台准则的内容(从用户生成的内容到商家特定数据)来提高信任度和安全性。

最大化盈利能力: ML 模型可以帮助根据购物和浏览历史提供准确且有针对性的产品推荐,并细分客户分析以提供更准确的广告。通过使用 AI 丰富内容元数据,团队可以更好地了解内容和产品格局。这使电子商务公司能够更好地专注于产品和内容增长工作,并尽早缩小趋势范围。

加速运营流程: 购物和内容趋势瞬息万变,而手动操作流程却过于缓慢。加速新商家入职、需求预测和内容优化等运营流程。人机交互等技术可以增强机器学习模型,使其达到人类水平的准确性和质量。

现有的没有人工智能的流程无法满足消费者不断变化的需求。电子商务市场面临三大挑战:

  1. 成本和投资呈指数级增长: 仅使用内部运营团队来管理电子商务数据和激活新产品通常会抑制增长。手动操作来获取、清理和丰富数据非常耗时。生成新产品资产(例如产品描述和产品摄影)的成本很高。
  2. 缺乏属性数据: 个性化系统受限于稀疏的属性数据。产品数据可能包含不正确的信息、重复项和缺失的属性,导致搜索和产品推荐效果不佳。用户行为内容元数据不够详细,导致内容推荐系统存在缺陷。
  3. 手动流程太慢: 消费者行为和内容趋势变化很快。当前系统需要太多时间和流程来发现和展示热门内容,平台在保持客户参与度和转化率方面落后。

在本指南中,我们将解释帮助解决这些挑战的主要用例,并提供帮助您利用 AI 发展业务的路线图。

电子商务中的人工智能:主要用例

电子商务中人工智能有许多不同的应用。在本指南中,我们将重点介绍电子商务中以数据为中心的应用程序的六个主要类别:

  1. 搜索、广告和发现
  2. 需求预测和库存管理
  3. 聊天机器人和客户服务
  4. 内容理解
  5. 丰富的产品数据
  6. 人工智能生成的产品图像

丰富的产品数据

电子商务数据的核心是高质量的产品目录数据。准确的产品目录数据包括显示在产品详细信息页面 (PDP) 上的详细属性,例如产品描述、颜色、材质、尺寸、品牌和产品分类。电子商务公司可以投资目录数据的用例主要有三种:

目录创建: 目录创建是电子商务团队在社交媒体等平台上构建新购物体验的绝佳起点。创建使团队能够从卖家信息流和公共互联网中汇总、丰富和刷新产品数据。机器学习基础设施可以提取品牌、卖家或网站,并提供所有可用产品和相关属性。应用程序示例包括社交商务,其中购物原生内置于社交媒体平台中。这为现有数字网络应用程序上的客户提供了新的购物机会。

属性丰富: 将属性数据添加到现有产品中,以帮助增强产品分类、按相关性对产品进行排名并生成细粒度的搜索结果。通过使用依赖于命名实体识别和图像分类技术的机器学习模型,可以从图像和文本中提取属性。改进底层产品目录数据非常重要,因为不正确的数据会导致搜索结果不佳、产品类别分类不正确或产品推荐不准确。由于搜索和推荐系统建立在准确的产品属性之上,因此属性丰富对于希望改进搜索和相关性的产品团队来说至关重要。

详细的产品数据(例如描述、属性、变体和交互式媒体)对电子商务公司的收入具有复合影响。

产品匹配和重复数据删除: AI 加速的人工注释可以帮助删除重复的产品、合并产品变体、修复产品详细信息页面上的不一致问题以及更正错误以实现项目权限。匹配端点获取有关两个不同产品的信息,并确定它们是否匹配以及相应的模型置信度得分。查找产品匹配可以帮助从目录中删除重复的产品,从而为客户提供更准确的结果。

电子商务团队可以通过准确、丰富的产品数据提高产品网站的参与度、可发现性和转化率。

ApiSmart

ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happier编辑https://apihug.com/zhCN-docs/copilothttps://apihug.com/zhCN-docs/copilot

ApiSmart 已经支持18家大模型供应商,n+大模型接入(本地环境可无限多模型);

  1. OpenAi

  2. Azure

  3. Gemini

  4. Anthropic

  5. DeepInfra

  6. Mooshot

  7. Zhipu

  8. DeepSeek

  9. Qianfan

  10. Grop

  11. Ollama

  12. Mistral

  13. LMStudio

  14. OpenRouter

  15. Jan

  16. GPT4All

  17. 通义-阿里

  18. 混元-腾讯

ApiHug - API Design & Develop New Paradigm.ApiHug - API Design & Develop New Paradigm.https://apihug.com/https://apihug.com/ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happierhttps://apihug.com/zhCN-docs/copilothttps://apihug.com/zhCN-docs/copilot

相关推荐
tuan_zhang34 分钟前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚
Antonio9151 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉
互联网资讯1 小时前
详解共享WiFi小程序怎么弄!
大数据·运维·网络·人工智能·小程序·生活
helianying552 小时前
AI赋能零售:ScriptEcho如何提升效率,优化用户体验
前端·人工智能·ux·零售
积鼎科技-多相流在线2 小时前
探索国产多相流仿真技术应用,积鼎科技助力石油化工工程数字化交付
人工智能·科技·cfd·流体仿真·多相流·virtualflow
XianxinMao2 小时前
开源AI崛起:新模型逼近商业巨头
人工智能·开源
格砸2 小时前
Trae使用体验,未来已至?
人工智能·openai·trae
AI2AGI3 小时前
天天AI-20250121:全面解读 AI 实践课程:动手学大模型(含PDF课件)
大数据·人工智能·百度·ai·文心一言
滴滴哒哒答答3 小时前
《自动驾驶与机器人中的SLAM技术》ch4:基于预积分和图优化的 GINS
人工智能·机器人·自动驾驶