【故障诊断】基于CNN-SVM卷积神经网络结合支持向量机的分类故障诊断

本文探讨了卷积神经网络(CNN)和支持向量机(SVM)相结合模型在故障分类识别中的应用,利用了CNN的特征提取优势和SVM的出色分类能力(用SVM作为CNN的最终分类器)。通过案例数据集展示了CNN-SVM组合模型在数据分类上的运行结果。本文采用Matlab编写代码,代码注释详细,逻辑清晰易懂,数据采用excel表格形式便于替换数据集,可main函数一键运行。

1 基本原理

卷积神经网络 (CNN) 是一种特殊的前馈深度学习算法,具有强大的特征提取能力和非线性运算能力,可以从原始数据中直接提取其明显特征,从而能够有效避免传统深度学习方法需要采取复杂数学方法进行数据特征提取的问题,其网络结构主要包含输入层、卷积层、池化层、全连接层和输出层。

在机器学习领域,支持向量机(Support Vector Machine,简称SVM)是一种广泛使用的监督学习模型,尤其在分类和回归问题上表现出色。SVM的核心思想是找到一个最优超平面,使得不同类别的样本点被最大程度地分离。

2 运行代码(部分)

%% 参数设置

options = trainingOptions('sgdm',... % SGDM 梯度下降算法

'MiniBatchSize',10,... % 批大小 每次训练样本个数10

'MaxEpochs',50,... % 最大训练次数 50

'InitialLearnRate',1e-2,... % 初始学习率为0.01

'LearnRateSchedule','piecewise',... % 学习率下降

'LearnRateDropFactor',0.1,... % 学习率下降因子 0.1

'LearnRateDropPeriod',35,... % 经过35次训练后 学习率为 0.01*0.1

'Shuffle','every-epoch',... % 每次训练打乱数据集

'ValidationPatience',Inf,... % 关闭验证

'Plots','training-progress',... % 画出曲线

'Verbose',false);

%% 训练CNN

net = trainNetwork(p_train,t_train,layers,options);

%% 提取CNN特征

layer = 'pool2';

p_train = activations(net,p_train,layer,'OutputAs','rows');

p_test = activations(net,p_test, layer,'OutputAs','rows');

p_train = double(p_train); p_test = double(p_test);

t_train = double(t_train); t_test = double(t_test);

%% 创建/训练SVM模型

cmd = [' -t 2',' -c ',num2str(100),' -g ',num2str(0.01)];

model = svmtrain(t_train,p_train,cmd);

3 实验结果

相关推荐
听风吹等浪起19 分钟前
第9章:基于Vision Transformer(ViT)网络实现的迁移学习图像分类任务:早期秧苗图像识别
分类·transformer·迁移学习
python机器学习ML6 小时前
机器学习——集成学习、线性模型、支持向量机、K近邻、决策树、朴素贝叶斯、虚拟分类器分析电动车数据集Python完整代码
python·算法·机器学习·分类
云天徽上7 小时前
【机器学习案列】基于朴素贝叶斯的垃圾短信分类
人工智能·机器学习·分类
浊酒南街12 小时前
SVM模型(理论知识2)
人工智能·机器学习·支持向量机
KeyPan12 小时前
【机器学习:三十三(二)、支持向量机(SVM)的核函数:概念、类型与应用】
人工智能·神经网络·算法·机器学习·支持向量机·数据挖掘
wit_@15 小时前
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
python·深度学习·机器学习·cnn·scikit-learn
云空1 天前
《Compact Convolutional Transformers:开启计算机视觉新篇》
人工智能·深度学习·计算机视觉·分类·keras
深度之眼1 天前
2025年CNN与Transformer融合的创新点思路
人工智能·深度学习·cnn·transformer
dwjf3211 天前
神经网络基础-价格分类案例
人工智能·神经网络·分类
笔写落去1 天前
统计学习方法(第二版) 第七章 支持向量机(第二节)
人工智能·算法·机器学习·支持向量机