【故障诊断】基于CNN-SVM卷积神经网络结合支持向量机的分类故障诊断

本文探讨了卷积神经网络(CNN)和支持向量机(SVM)相结合模型在故障分类识别中的应用,利用了CNN的特征提取优势和SVM的出色分类能力(用SVM作为CNN的最终分类器)。通过案例数据集展示了CNN-SVM组合模型在数据分类上的运行结果。本文采用Matlab编写代码,代码注释详细,逻辑清晰易懂,数据采用excel表格形式便于替换数据集,可main函数一键运行。

1 基本原理

卷积神经网络 (CNN) 是一种特殊的前馈深度学习算法,具有强大的特征提取能力和非线性运算能力,可以从原始数据中直接提取其明显特征,从而能够有效避免传统深度学习方法需要采取复杂数学方法进行数据特征提取的问题,其网络结构主要包含输入层、卷积层、池化层、全连接层和输出层。

在机器学习领域,支持向量机(Support Vector Machine,简称SVM)是一种广泛使用的监督学习模型,尤其在分类和回归问题上表现出色。SVM的核心思想是找到一个最优超平面,使得不同类别的样本点被最大程度地分离。

2 运行代码(部分)

%% 参数设置

options = trainingOptions('sgdm',... % SGDM 梯度下降算法

'MiniBatchSize',10,... % 批大小 每次训练样本个数10

'MaxEpochs',50,... % 最大训练次数 50

'InitialLearnRate',1e-2,... % 初始学习率为0.01

'LearnRateSchedule','piecewise',... % 学习率下降

'LearnRateDropFactor',0.1,... % 学习率下降因子 0.1

'LearnRateDropPeriod',35,... % 经过35次训练后 学习率为 0.01*0.1

'Shuffle','every-epoch',... % 每次训练打乱数据集

'ValidationPatience',Inf,... % 关闭验证

'Plots','training-progress',... % 画出曲线

'Verbose',false);

%% 训练CNN

net = trainNetwork(p_train,t_train,layers,options);

%% 提取CNN特征

layer = 'pool2';

p_train = activations(net,p_train,layer,'OutputAs','rows');

p_test = activations(net,p_test, layer,'OutputAs','rows');

p_train = double(p_train); p_test = double(p_test);

t_train = double(t_train); t_test = double(t_test);

%% 创建/训练SVM模型

cmd = [' -t 2',' -c ',num2str(100),' -g ',num2str(0.01)];

model = svmtrain(t_train,p_train,cmd);

3 实验结果

相关推荐
LASDAaaa12314 小时前
【计算机视觉】基于Mask R-CNN的自动扶梯缺陷检测方法实现
计算机视觉·r语言·cnn
IT阳晨。7 小时前
【CNN卷积神经网络(吴恩达)】深度卷积网络(实例探究)学习笔记
深度学习·cnn
Brduino脑机接口技术答疑13 小时前
脑机接口数据处理连载(九) 经典分类算法(一):支持向量机(SVM)数据建模——基于脑机接口(BCI)运动想象任务实战
支持向量机·分类·数据挖掘
OLOLOadsd12315 小时前
白蚁检测与分类系统:基于YOLOv8的白蚁本体和翅膀识别模型实现
yolo·分类·数据挖掘
OLOLOadsd12316 小时前
YOLO11改进_C3k2-ODConv优化_车轮缺陷检测与分类系统_裂纹划痕识别_原创
人工智能·分类·数据挖掘
Dingdangcat8616 小时前
基于YOLO11分割的弹簧质量检测与分类系统RepNCSPELAN_CAA模型训练与实现
人工智能·分类·数据挖掘
2501_9361460416 小时前
基于YOLO11多骨干网络的太阳能面板检测与地表覆盖分类研究
人工智能·分类·数据挖掘
2501_9413331016 小时前
表格结构识别与内容解析——基于Cascade R-CNN的表格行、列、单元格自动检测与分类_1
分类·r语言·cnn
Quintus五等升1 天前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
2501_936146041 天前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘