opencv实战--颜色识别

一、实验原理

本实验通过掩膜,边缘识别来找到我们寻找的颜色所在区域,最后通过对图像边缘绘制标记出我们要找到颜色。为了确保掩膜的完好,我们将使用均值滤波,腐蚀,饱和等手段对掩膜进行处理。

二、实验代码

python 复制代码
import cv2
import numpy as np


# 1 输入图片
img = cv2.imread('./color_1.png')
img = cv2.resize(img,dsize=None,fx=0.5,fy=0.5)
# 2 需要识别颜色 转换1hsv颜色空间
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# 3 设定要识别的颜色

hsv_min=np.array([26,43,46],dtype=np.uint8)
hsv_max=np.array([34,255,255],dtype=np.uint8)
hsv_y = cv2.inRange(img_hsv,hsv_min,hsv_max)

# 4 进行滤波
img_blur = cv2.GaussianBlur(hsv_y,(3,3),150)
# img_blur = cv2.medianBlur(hsv_y,7)
# 5 先腐蚀,在膨胀

ke = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
img_erode = cv2.erode(img_blur,ke)
img_dilate = cv2.dilate(img_erode,ke)

# 6 寻找轮廓
c,h = cv2.findContours(img_dilate,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

img_copy = img.copy()

# 7 遍历所有轮廓,通过面积筛选想要的轮廓


# 绘制轮廓
for cnt in c:
    if cv2.contourArea(cnt) < 2 or cv2.contourArea(cnt)>20000:
        continue
    else:
        img_copy = cv2.drawContours(img_copy,[cnt], -1, (255, 0, 0), 1)



# 输出图像
cv2.imshow('img',img)
cv2.imshow('img_h',img_copy)
cv2.waitKey(0)

三,成果展示

原图像

识别出的图像

相关推荐
m0_6770343510 小时前
机器学习-异常检测
人工智能·深度学习·机器学习
张子夜 iiii10 小时前
实战项目-----在图片 hua.png 中,用红色画出花的外部轮廓,用绿色画出其简化轮廓(ε=周长×0.005),并在同一窗口显示
人工智能·pytorch·python·opencv·计算机视觉
胡耀超11 小时前
3.Python高级数据结构与文本处理
服务器·数据结构·人工智能·windows·python·大模型
索迪迈科技11 小时前
GPS汽车限速器有哪些功能?主要运用在哪里?
人工智能·行车记录仪·车辆安全·监控管理·gps定位
Niuguangshuo11 小时前
深度学习基本模块:Conv2D 二维卷积层
人工智能·深度学习
b***251111 小时前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
金井PRATHAMA11 小时前
AI赋能训诂学:解码古籍智能新纪元
人工智能·自然语言处理·知识图谱
练习两年半的工程师11 小时前
AWS TechFest 2025: 智能体企业级开发流程、Strands Agents
人工智能·云计算·aws
Hello123网站12 小时前
Whismer-你的定制化AI问答助手
人工智能·chatgpt·ai工具
yinmaisoft12 小时前
当低代码遇上AI,有趣,实在有趣
android·人工智能·低代码·开发工具·rxjava