opencv实战--颜色识别

一、实验原理

本实验通过掩膜,边缘识别来找到我们寻找的颜色所在区域,最后通过对图像边缘绘制标记出我们要找到颜色。为了确保掩膜的完好,我们将使用均值滤波,腐蚀,饱和等手段对掩膜进行处理。

二、实验代码

python 复制代码
import cv2
import numpy as np


# 1 输入图片
img = cv2.imread('./color_1.png')
img = cv2.resize(img,dsize=None,fx=0.5,fy=0.5)
# 2 需要识别颜色 转换1hsv颜色空间
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# 3 设定要识别的颜色

hsv_min=np.array([26,43,46],dtype=np.uint8)
hsv_max=np.array([34,255,255],dtype=np.uint8)
hsv_y = cv2.inRange(img_hsv,hsv_min,hsv_max)

# 4 进行滤波
img_blur = cv2.GaussianBlur(hsv_y,(3,3),150)
# img_blur = cv2.medianBlur(hsv_y,7)
# 5 先腐蚀,在膨胀

ke = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
img_erode = cv2.erode(img_blur,ke)
img_dilate = cv2.dilate(img_erode,ke)

# 6 寻找轮廓
c,h = cv2.findContours(img_dilate,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

img_copy = img.copy()

# 7 遍历所有轮廓,通过面积筛选想要的轮廓


# 绘制轮廓
for cnt in c:
    if cv2.contourArea(cnt) < 2 or cv2.contourArea(cnt)>20000:
        continue
    else:
        img_copy = cv2.drawContours(img_copy,[cnt], -1, (255, 0, 0), 1)



# 输出图像
cv2.imshow('img',img)
cv2.imshow('img_h',img_copy)
cv2.waitKey(0)

三,成果展示

原图像

识别出的图像

相关推荐
TGITCIC1 小时前
能源AI天团:多智能体如何破解行业复杂任务
人工智能·能源·新能源·ai agent·大模型ai·ai能源·能源大模型
我爱计算机视觉2 小时前
ICCV 2025 | VideoOrion: 将视频中的物体动态编码进大语言模型,理解视频涨点10%以上!
人工智能·语言模型·自然语言处理
不枯石2 小时前
Matlab通过GUI实现点云的随机一致性(RANSAC)配准
开发语言·图像处理·算法·计算机视觉·matlab
WWZZ20253 小时前
ORB_SLAM2原理及代码解析:Tracking::CreateInitialMapMonocular() 函数
人工智能·opencv·算法·计算机视觉·机器人·slam·感知
WWZZ20253 小时前
ORB_SLAM2原理及代码解析:Tracking::MonocularInitialization() 函数
人工智能·opencv·算法·计算机视觉·机器人·感知·单目相机
那雨倾城3 小时前
PiscCode:基于OpenCV的前景物体检测
图像处理·python·opencv·计算机视觉
eve杭4 小时前
解锁数据主权与极致性能:AI本地部署的全面指南
大数据·人工智能·5g·ai
数字时代全景窗4 小时前
商业航天与数字经济(一):从4G、5G得与失,看6G时代商业航天如何成为新经济引擎?
大数据·人工智能·5g
F_D_Z5 小时前
【一文理解】下采样与上采样区别
人工智能·深度学习·计算机视觉
CiLerLinux5 小时前
第三十五章 ESP32S3 摄像头实验
图像处理·人工智能·计算机视觉