opencv实战--颜色识别

一、实验原理

本实验通过掩膜,边缘识别来找到我们寻找的颜色所在区域,最后通过对图像边缘绘制标记出我们要找到颜色。为了确保掩膜的完好,我们将使用均值滤波,腐蚀,饱和等手段对掩膜进行处理。

二、实验代码

python 复制代码
import cv2
import numpy as np


# 1 输入图片
img = cv2.imread('./color_1.png')
img = cv2.resize(img,dsize=None,fx=0.5,fy=0.5)
# 2 需要识别颜色 转换1hsv颜色空间
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# 3 设定要识别的颜色

hsv_min=np.array([26,43,46],dtype=np.uint8)
hsv_max=np.array([34,255,255],dtype=np.uint8)
hsv_y = cv2.inRange(img_hsv,hsv_min,hsv_max)

# 4 进行滤波
img_blur = cv2.GaussianBlur(hsv_y,(3,3),150)
# img_blur = cv2.medianBlur(hsv_y,7)
# 5 先腐蚀,在膨胀

ke = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
img_erode = cv2.erode(img_blur,ke)
img_dilate = cv2.dilate(img_erode,ke)

# 6 寻找轮廓
c,h = cv2.findContours(img_dilate,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

img_copy = img.copy()

# 7 遍历所有轮廓,通过面积筛选想要的轮廓


# 绘制轮廓
for cnt in c:
    if cv2.contourArea(cnt) < 2 or cv2.contourArea(cnt)>20000:
        continue
    else:
        img_copy = cv2.drawContours(img_copy,[cnt], -1, (255, 0, 0), 1)



# 输出图像
cv2.imshow('img',img)
cv2.imshow('img_h',img_copy)
cv2.waitKey(0)

三,成果展示

原图像

识别出的图像

相关推荐
TuringAcademy12 分钟前
AAAI爆款:目标检测新范式,模块化设计封神之作
论文阅读·人工智能·目标检测·论文笔记
The Open Group3 小时前
英特尔公司Darren Pulsipher 博士:以架构之力推动政府数字化转型
大数据·人工智能·架构
Ronin-Lotus4 小时前
深度学习篇---卷积核的权重
人工智能·深度学习
.银河系.4 小时前
8.18 机器学习-决策树(1)
人工智能·决策树·机器学习
敬往事一杯酒哈4 小时前
第7节 神经网络
人工智能·深度学习·神经网络
三掌柜6664 小时前
NVIDIA 技术沙龙探秘:聚焦 Physical AI 专场前沿技术
大数据·人工智能
2502_927161284 小时前
DAY 42 Grad-CAM与Hook函数
人工智能
Hello123网站4 小时前
Flowith-节点式GPT-4 驱动的AI生产力工具
人工智能·ai工具
yzx9910135 小时前
Yolov模型的演变
人工智能·算法·yolo
若天明5 小时前
深度学习-计算机视觉-微调 Fine-tune
人工智能·python·深度学习·机器学习·计算机视觉·ai·cnn