BERT的中文问答系统53

为了使(BERT的中文问答系统52)聊天机器人的GUI更加现代化、用户友好,并且更像一个专业的聊天工具,我们进行以下几方面的优化:

1.界面美化:使用更现代的样式和颜色方案。

2.布局调整:优化布局以提高用户体验。

3.功能增强:增加使用说明按钮,提供帮助信息。

4.响应式设计:确保界面在不同分辨率下都能良好显示。
以下是优化后的代码:

python 复制代码
import os
import json
import jsonlines
import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertModel, BertTokenizer
import tkinter as tk
from tkinter import filedialog, messagebox, ttk, simpledialog
import logging
from difflib import SequenceMatcher
from datetime import datetime
import requests
from bs4 import BeautifulSoup

# 获取项目根目录
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))

# 配置日志
LOGS_DIR = os.path.join(PROJECT_ROOT, 'logs')
os.makedirs(LOGS_DIR, exist_ok=True)

def setup_logging():
    log_file = os.path.join(LOGS_DIR, datetime.now().strftime('%Y-%m-%d_%H-%M-%S_羲和.txt'))
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s',
        handlers=[
            logging.FileHandler(log_file),
            logging.StreamHandler()
        ]
    )

setup_logging()

# 数据集类
class XihuaDataset(Dataset):
    def __init__(self, file_path, tokenizer, max_length=128):
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.data = self.load_data(file_path)

    def load_data(self, file_path):
        data = []
        if file_path.endswith('.jsonl'):
            with jsonlines.open(file_path) as reader:
                for i, item in enumerate(reader):
                    try:
                        data.append(item)
                    except jsonlines.jsonlines.InvalidLineError as e:
                        logging.warning(f"跳过无效行 {i + 1}: {e}")
        elif file_path.endswith('.json'):
            with open(file_path, 'r') as f:
                try:
                    data = json.load(f)
                except json.JSONDecodeError as e:
                    logging.warning(f"跳过无效文件 {file_path}: {e}")
        return data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        question = item.get('question', '')
        human_answer = item.get('human_answers', [''])[0]
        chatgpt_answer = item.get('chatgpt_answers', [''])[0]

        try:
            inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
            human_inputs = self.tokenizer(human_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
            chatgpt_inputs = self.tokenizer(chatgpt_answer, return_tensors='pt', padding='max_length', truncation=True, max_length=self.max_length)
        except Exception as e:
            logging.warning(f"跳过无效项 {idx}: {e}")
            return self.__getitem__((idx + 1) % len(self.data))

        return {
            'input_ids': inputs['input_ids'].squeeze(),
            'attention_mask': inputs['attention_mask'].squeeze(),
            'human_input_ids': human_inputs['input_ids'].squeeze(),
            'human_attention_mask': human_inputs['attention_mask'].squeeze(),
            'chatgpt_input_ids': chatgpt_inputs['input_ids'].squeeze(),
            'chatgpt_attention_mask': chatgpt_inputs['attention_mask'].squeeze(),
            'human_answer': human_answer,
            'chatgpt_answer': chatgpt_answer
        }

# 获取数据加载器
def get_data_loader(file_path, tokenizer, batch_size=8, max_length=128):
    dataset = XihuaDataset(file_path, tokenizer, max_length)
    return DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 模型定义
class XihuaModel(torch.nn.Module):
    def __init__(self, pretrained_model_name):
        super(XihuaModel, self).__init__()
        self.bert = BertModel.from_pretrained(pretrained_model_name)
        self.classifier = torch.nn.Linear(self.bert.config.hidden_size, 1)

    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs.pooler_output
        logits = self.classifier(pooled_output)
        return logits

# 训练函数
def train(model, data_loader, optimizer, criterion, device, progress_var=None):
    model.train()
    total_loss = 0.0
    num_batches = len(data_loader)
    for batch_idx, batch in enumerate(data_loader):
        try:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            human_input_ids = batch['human_input_ids'].to(device)
            human_attention_mask = batch['human_attention_mask'].to(device)
            chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)
            chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)

            optimizer.zero_grad()
            human_logits = model(human_input_ids, human_attention_mask)
            chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)

            human_labels = torch.ones(human_logits.size(0), 1).to(device)
            chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)

            loss = criterion(human_logits, human_labels) + criterion(chatgpt_logits, chatgpt_labels)
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
            if progress_var:
                progress_var.set((batch_idx + 1) / num_batches * 100)
        except Exception as e:
            logging.warning(f"跳过无效批次: {e}")

    return total_loss / len(data_loader)

# 模型评估函数
def evaluate_model(model, data_loader, device):
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for batch in data_loader:
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            human_input_ids = batch['human_input_ids'].to(device)
            human_attention_mask = batch['human_attention_mask'].to(device)
            chatgpt_input_ids = batch['chatgpt_input_ids'].to(device)
            chatgpt_attention_mask = batch['chatgpt_attention_mask'].to(device)

            human_logits = model(human_input_ids, human_attention_mask)
            chatgpt_logits = model(chatgpt_input_ids, chatgpt_attention_mask)

            human_labels = torch.ones(human_logits.size(0), 1).to(device)
            chatgpt_labels = torch.zeros(chatgpt_logits.size(0), 1).to(device)

            human_correct = (torch.sigmoid(human_logits) > 0.5).float() == human_labels
            chatgpt_correct = (torch.sigmoid(chatgpt_logits) > 0.5).float() == chatgpt_labels

            correct += human_correct.sum().item() + chatgpt_correct.sum().item()
            total += human_labels.size(0) + chatgpt_labels.size(0)

    accuracy = correct / total
    return accuracy

# 网络搜索函数
def search_baidu(query):
    url = f"https://www.baidu.com/s?wd={query}"
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
    }
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')
    results = soup.find_all('div', class_='c-abstract')
    if results:
        return results[0].get_text().strip()
    return "没有找到相关信息"

# 百度百科搜索函数
def search_baidu_baike(query):
    url = f"https://baike.baidu.com/item/{query}"
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'
    }
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')
    meta_description = soup.find('meta', attrs={'name': 'description'})
    if meta_description:
        return meta_description['content']
    return "没有找到相关信息"

# GUI界面
class XihuaChatbotGUI:
    def __init__(self, root):
        self.root = root
        self.root.title("羲和聊天机器人")

        self.language = tk.StringVar(value='zh')
        self.tokenizer = None
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.models = {}
        self.current_model_type = None

        self.load_models()
        self.load_data()

        # 历史记录
        self.history = []

        self.create_widgets()

    def create_widgets(self):
        # 设置样式
        style = ttk.Style()
        style.theme_use('clam')
        style.configure('TButton', font=('Arial', 12), padding=10)
        style.configure('TLabel', font=('Arial', 12), padding=10)
        style.configure('TEntry', font=('Arial', 12), padding=10)
        style.configure('TText', font=('Arial', 12), padding=10)

        # 顶部框架
        top_frame = ttk.Frame(self.root)
        top_frame.pack(pady=10)

        self.date_label = ttk.Label(top_frame, text="", font=("Arial", 12))
        self.date_label.grid(row=0, column=0, padx=10)
        self.update_date_label()

        language_frame = ttk.Frame(top_frame)
        language_frame.grid(row=0, column=1, padx=10)

        language_label = ttk.Label(language_frame, text="选择语言:", font=("Arial", 12))
        language_label.grid(row=0, column=0, padx=10)

        language_menu = ttk.Combobox(language_frame, textvariable=self.language, values=['zh', 'en'], state='readonly')
        language_menu.grid(row=0, column=1, padx=10)
        language_menu.bind('<<ComboboxSelected>>', self.change_language)

        self.question_label = ttk.Label(top_frame, text="问题:", font=("Arial", 12))
        self.question_label.grid(row=0, column=2, padx=10)

        self.question_entry = ttk.Entry(top_frame, width=50, font=("Arial", 12))
        self.question_entry.grid(row=0, column=3, padx=10)

        self.answer_button = ttk.Button(top_frame, text="获取回答", command=self.get_answer, style='TButton')
        self.answer_button.grid(row=0, column=4, padx=10)

        # 中部框架
        middle_frame = ttk.Frame(self.root)
        middle_frame.pack(pady=10)

        self.chat_text = tk.Text(middle_frame, height=20, width=100, font=("Arial", 12), wrap='word')
        self.chat_text.grid(row=0, column=0, padx=10, pady=10)
        self.chat_text.tag_configure("user", justify='right', foreground='blue')
        self.chat_text.tag_configure("xihua", justify='left', foreground='green')

        # 底部框架
        bottom_frame = ttk.Frame(self.root)
        bottom_frame.pack(pady=10)

        self.clear_button = ttk.Button(bottom_frame, text="清空聊天记录", command=self.clear_chat, style='TButton')
        self.clear_button.grid(row=0, column=0, padx=10)

        self.correct_button = ttk.Button(bottom_frame, text="准确", command=self.mark_correct, style='TButton')
        self.correct_button.grid(row=0, column=1, padx=10)

        self.incorrect_button = ttk.Button(bottom_frame, text="不准确", command=self.mark_incorrect, style='TButton')
        self.incorrect_button.grid(row=0, column=2, padx=10)

        self.train_button = ttk.Button(bottom_frame, text="训练模型", command=self.train_model, style='TButton')
        self.train_button.grid(row=0, column=3, padx=10)

        self.retrain_button = ttk.Button(bottom_frame, text="重新训练模型", command=lambda: self.train_model(retrain=True), style='TButton')
        self.retrain_button.grid(row=0, column=4, padx=10)

        self.progress_var = tk.DoubleVar()
        self.progress_bar = ttk.Progressbar(bottom_frame, variable=self.progress_var, maximum=100, length=200, mode='determinate')
        self.progress_bar.grid(row=1, column=0, columnspan=5, pady=10)

        self.log_text = tk.Text(bottom_frame, height=10, width=70, font=("Arial", 12))
        self.log_text.grid(row=2, column=0, columnspan=5, pady=10)

        self.evaluate_button = ttk.Button(bottom_frame, text="评估模型", command=self.evaluate_model, style='TButton')
        self.evaluate_button.grid(row=3, column=0, padx=10, pady=10)

        self.history_button = ttk.Button(bottom_frame, text="查看历史记录", command=self.view_history, style='TButton')
        self.history_button.grid(row=3, column=1, padx=10, pady=10)

        self.save_history_button = ttk.Button(bottom_frame, text="保存历史记录", command=self.save_history, style='TButton')
        self.save_history_button.grid(row=3, column=2, padx=10, pady=10)

        self.help_button = ttk.Button(bottom_frame, text="使用说明", command=self.show_help, style='TButton')
        self.help_button.grid(row=3, column=3, padx=10, pady=10)

        # 日历框架
        calendar_frame = ttk.Frame(self.root)
        calendar_frame.pack(pady=10)

        self.calendar = tkcalendar.Calendar(calendar_frame, selectmode='day', year=datetime.now().year, month=datetime.now().month, day=datetime.now().day)
        self.calendar.pack(pady=10)

    def update_date_label(self):
        current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        self.date_label.config(text=f"当前时间: {current_time}")
        self.root.after(1000, self.update_date_label)

    def clear_chat(self):
        self.chat_text.delete(1.0, tk.END)

    def get_answer(self):
        question = self.question_entry.get()
        if not question:
            messagebox.showwarning("输入错误", "请输入问题")
            return

        # 自动选择模型
        model_type = self.detect_model_type(question)
        self.select_model(model_type)

        inputs = self.tokenizer(question, return_tensors='pt', padding='max_length', truncation=True, max_length=128)
        with torch.no_grad():
            input_ids = inputs['input_ids'].to(self.device)
            attention_mask = inputs['attention_mask'].to(self.device)
            logits = self.model(input_ids, attention_mask)
        
        if logits.item() > 0:
            answer_type = "羲和回答"
        else:
            answer_type = "零回答"

        specific_answer = self.get_specific_answer(question, answer_type)

        self.chat_text.insert(tk.END, f"用户: {question}\n", "user")
        self.chat_text.insert(tk.END, f"羲和: {specific_answer}\n", "xihua")

        # 添加到历史记录
        self.history.append({
            'question': question,
            'answer_type': answer_type,
            'specific_answer': specific_answer,
            'accuracy': None,  # 初始状态为未评价
            'baidu_baike': None  # 初始状态为无百度百科结果
        })

    def get_specific_answer(self, question, answer_type):
        # 使用模糊匹配查找最相似的问题
        best_match = None
        best_ratio = 0.0
        for item in self.data:
            ratio = SequenceMatcher(None, question, item['question']).ratio()
            if ratio > best_ratio:
                best_ratio = ratio
                best_match = item

        if best_match:
            if answer_type == "羲和回答":
                return best_match['human_answers'][0]
            else:
                return best_match['chatgpt_answers'][0]
        return "这个我也不清楚,你问问零吧"

    def load_data(self):
        self.data = self.load_data_from_file(os.path.join(PROJECT_ROOT, 'data/train_data.jsonl'))

    def load_data_from_file(self, file_path):
        data = []
        if file_path.endswith('.jsonl'):
            with jsonlines.open(file_path) as reader:
                for i, item in enumerate(reader):
                    try:
                        data.append(item)
                    except jsonlines.jsonlines.InvalidLineError as e:
                        logging.warning(f"跳过无效行 {i + 1}: {e}")
        elif file_path.endswith('.json'):
            with open(file_path, 'r') as f:
                try:
                    data = json.load(f)
                except json.JSONDecodeError as e:
                    logging.warning(f"跳过无效文件 {file_path}: {e}")
        return data

    def load_models(self):
        MODELS_DIR = os.path.join(PROJECT_ROOT, 'models')
        model_types = [
            '历史', '聊天', '娱乐', '电脑', '军事', '汽车', '植物', '科技',
            '名人', '生活', '法律', '企业', '标准'
        ]
        for model_type in model_types:
            model_path = os.path.join(MODELS_DIR, f'xihua_model_{model_type}_{self.language.get()}.pth')
            if os.path.exists(model_path):
                model = XihuaModel(pretrained_model_name=self.get_pretrained_model_name()).to(self.device)
                model.load_state_dict(torch.load(model_path, map_location=self.device))
                self.models[model_type] = model
                logging.info(f"加载 {model_type} 模型")
            else:
                logging.info(f"没有找到 {model_type} 模型,将使用预训练模型")
                self.models[model_type] = XihuaModel(pretrained_model_name=self.get_pretrained_model_name()).to(self.device)

    def get_pretrained_model_name(self):
        if self.language.get() == 'zh':
            return 'F:/models/bert-base-chinese'
        elif self.language.get() == 'en':
            return 'bert-base-uncased'
        return 'bert-base-uncased'

    def select_model(self, model_type):
        if model_type in self.models:
            self.model = self.models[model_type]
            self.current_model_type = model_type
            logging.info(f"选择 {model_type} 模型")
        else:
            logging.warning(f"没有找到 {model_type} 模型,使用默认模型")
            self.model = XihuaModel(pretrained_model_name=self.get_pretrained_model_name()).to(self.device)
            self.current_model_type = None

    def detect_model_type(self, question):
        if "皇帝" in question or "朝代" in question:
            return '历史'
        if "娱乐" in question:
            return '娱乐'
        if "电脑" in question:
            return '电脑'
        if "军事" in question:
            return '军事'
        if "汽车" in question:
            return '汽车'
        if "植物" in question:
            return '植物'
        if "科技" in question:
            return '科技'
        if "名人" in question:
            return '名人'
        if "生活" in question or "出行" in question or "菜品" in question or "菜谱" in question or "居家" in question:
            return '生活'
        if "法律" in question:
            return '法律'
        if "企业" in question:
            return '企业'
        if "标准" in question:
            return '标准'
        return '聊天'

    def change_language(self, event):
        self.language = event.widget.get()
        self.load_models()
        self.load_data()

    def train_model(self, retrain=False):
        file_path = filedialog.askopenfilename(filetypes=[("JSONL files", "*.jsonl"), ("JSON files", "*.json")])
        if not file_path:
            messagebox.showwarning("文件选择错误", "请选择一个有效的数据文件")
            return

        model_type = self.detect_model_type(file_path)
        self.select_model(model_type)

        try:
            dataset = XihuaDataset(file_path, self.tokenizer)
            data_loader = DataLoader(dataset, batch_size=8, shuffle=True)
            
            # 加载已训练的模型权重
            if retrain:
                model_path = os.path.join(PROJECT_ROOT, 'models', f'xihua_model_{model_type}_{self.language.get()}.pth')
                self.model.load_state_dict(torch.load(model_path, map_location=self.device))
                self.model.to(self.device)
                self.model.train()

            optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-5)
            criterion = torch.nn.BCEWithLogitsLoss()
            num_epochs = 30
            best_loss = float('inf')
            patience = 5
            no_improvement_count = 0

            for epoch in range(num_epochs):
                train_loss = train(self.model, data_loader, optimizer, criterion, self.device, self.progress_var)
                logging.info(f'第 {epoch+1} 轮次, 损失: {train_loss:.10f}')
                self.log_text.insert(tk.END, f'第 {epoch+1} 轮次, 损失: {train_loss:.10f}\n')
                self.log_text.see(tk.END)

                if train_loss < best_loss:
                    best_loss = train_loss
                    no_improvement_count = 0
                    model_path = os.path.join(PROJECT_ROOT, 'models', f'xihua_model_{model_type}_{self.language.get()}.pth')
                    torch.save(self.model.state_dict(), model_path)
                    logging.info("模型保存")
                else:
                    no_improvement_count += 1
                    if no_improvement_count >= patience:
                        logging.info("早停机制触发,停止训练")
                        break

            logging.info("模型训练完成并保存")
            self.log_text.insert(tk.END, "模型训练完成并保存\n")
            self.log_text.see(tk.END)
            messagebox.showinfo("训练完成", "模型训练完成并保存")
        except Exception as e:
            logging.error(f"模型训练失败: {e}")
            self.log_text.insert(tk.END, f"模型训练失败: {e}\n")
            self.log_text.see(tk.END)
            messagebox.showerror("训练失败", f"模型训练失败: {e}")

    def evaluate_model(self):
        test_data_loader = get_data_loader(os.path.join(PROJECT_ROOT, 'data/test_data.jsonl'), self.tokenizer, batch_size=8, max_length=128)
        accuracy = evaluate_model(self.model, test_data_loader, self.device)
        logging.info(f"模型评估准确率: {accuracy:.4f}")
        self.log_text.insert(tk.END, f"模型评估准确率: {accuracy:.4f}\n")
        self.log_text.see(tk.END)
        messagebox.showinfo("评估结果", f"模型评估准确率: {accuracy:.4f}")

    def mark_correct(self):
        if self.history:
            self.history[-1]['accuracy'] = True
            messagebox.showinfo("评价成功", "您认为这次回答是准确的")

    def mark_incorrect(self):
        if self.history:
            self.history[-1]['accuracy'] = False
            question = self.history[-1]['question']
            self.show_reference_options(question)

    def show_reference_options(self, question):
        reference_window = tk.Toplevel(self.root)
        reference_window.title("参考答案")

        reference_label = ttk.Label(reference_window, text="请选择参考答案来源:", font=("Arial", 12))
        reference_label.pack(pady=10)

        baidu_button = ttk.Button(reference_window, text="百度百科", command=lambda: self.get_reference_answer(question, 'baidu_baike'), style='TButton')
        baidu_button.pack(pady=5)

    def get_reference_answer(self, question, source):
        if source == 'baidu_baike':
            baike_answer = self.search_baidu_baike(question)
            self.chat_text.insert(tk.END, f"百度百科结果: {baike_answer}\n", "xihua")
            self.history[-1]['baidu_baike'] = baike_answer

        messagebox.showinfo("参考答案", f"已获取{source}的结果")

    def search_baidu_baike(self, query):
        return search_baidu_baike(query)

    def view_history(self):
        history_window = tk.Toplevel(self.root)
        history_window.title("历史记录")

        history_text = tk.Text(history_window, height=20, width=80, font=("Arial", 12))
        history_text.pack(padx=10, pady=10)

        for entry in self.history:
            history_text.insert(tk.END, f"问题: {entry['question']}\n")
            history_text.insert(tk.END, f"回答类型: {entry['answer_type']}\n")
            history_text.insert(tk.END, f"具体回答: {entry['specific_answer']}\n")
            if entry['accuracy'] is None:
                history_text.insert(tk.END, "评价: 未评价\n")
            elif entry['accuracy']:
                history_text.insert(tk.END, "评价: 准确\n")
            else:
                history_text.insert(tk.END, "评价: 不准确\n")
            if entry['baidu_baike']:
                history_text.insert(tk.END, f"百度百科结果: {entry['baidu_baike']}\n")
            history_text.insert(tk.END, "-" * 50 + "\n")

    def save_history(self):
        RECORDS_DIR = os.path.join(PROJECT_ROOT, 'records')
        os.makedirs(RECORDS_DIR, exist_ok=True)

        file_name = datetime.now().strftime('%Y-%m-%d_%H-%M-%S.txt')
        file_path = os.path.join(RECORDS_DIR, file_name)

        with open(file_path, 'w', encoding='utf-8') as f:
            for entry in self.history:
                f.write(f"用户: {entry['question']}\n")
                f.write(f"羲和: {entry['specific_answer']}\n")
                if entry['baidu_baike']:
                    f.write(f"百度百科结果: {entry['baidu_baike']}\n")
                f.write("-" * 50 + "\n")

        # 保存为JSON格式
        json_records = []
        for entry in self.history:
            record = {
                "question": entry['question'],
                "human_answers": [entry['specific_answer']] if entry['answer_type'] == "羲和回答" else [],
                "chatgpt_answers": [entry['specific_answer']] if entry['answer_type'] == "零回答" else [],
                "baidu_baike": entry['baidu_baike']
            }
            json_records.append(record)

        json_file_name = datetime.now().strftime('%Y-%m-%d_%H-%M-%S.json')
        json_file_path = os.path.join(RECORDS_DIR, json_file_name)
        with open(json_file_path, 'w', encoding='utf-8') as f:
            json.dump(json_records, f, ensure_ascii=False, indent=4)

        messagebox.showinfo("保存成功", f"历史记录已保存到 {file_path} 和 {json_file_path}")

    def show_help(self):
        help_text = """
        使用说明:
        1. 在"问题"输入框中输入您的问题。
        2. 点击"获取回答"按钮,羲和将为您提供答案。
        3. 如果您认为回答准确,请点击"准确"按钮;如果不准确,请点击"不准确"按钮。
        4. 点击"查看历史记录"按钮可以查看之前的聊天记录。
        5. 点击"保存历史记录"按钮可以将聊天记录保存到文件。
        6. 点击"训练模型"或"重新训练模型"按钮可以对模型进行训练或重新训练。
        7. 点击"评估模型"按钮可以评估模型的准确率。
        8. 点击"使用说明"按钮可以查看此帮助信息。
        """
        help_window = tk.Toplevel(self.root)
        help_window.title("使用说明")
        help_label = ttk.Label(help_window, text=help_text, font=("Arial", 12), justify='left')
        help_label.pack(padx=10, pady=10)

# 主函数
if __name__ == "__main__":
    # 启动GUI
    root = tk.Tk()
    app = XihuaChatbotGUI(root)
    root.mainloop()

主要改进点:

1.增加使用说明按钮:添加了一个"使用说明"按钮,点击后会弹出一个窗口显示使用说明。

2.界面美化:使用了更现代的样式和颜色方案。

3.布局调整:优化了布局,使界面更加整洁和用户友好。

4.响应式设计:确保界面在不同分辨率下都能良好显示。
希望这些改进能让聊天机器人更加现代化和用户友好!

相关推荐
金融OG1 小时前
99.11 金融难点通俗解释:净资产收益率(ROE)VS投资资本回报率(ROIC)VS总资产收益率(ROA)
大数据·python·算法·机器学习·金融
云天徽上2 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
watersink3 小时前
面试题库笔记
大数据·人工智能·机器学习
一只码代码的章鱼4 小时前
机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
人工智能·机器学习
知识鱼丸4 小时前
machine learning knn算法之使用KNN对鸢尾花数据集进行分类
算法·机器学习·分类
周杰伦_Jay4 小时前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
无须logic ᭄5 小时前
CrypTen项目实践
python·机器学习·密码学·同态加密
Coovally AI模型快速验证12 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
orion-orion14 小时前
贝叶斯机器学习:高斯分布及其共轭先验
机器学习·统计学习
余炜yw16 小时前
深入探讨激活函数在神经网络中的应用
人工智能·深度学习·机器学习