伏羲0.06(文生图)

主要改进点:

数据准备:

数据清洗:增加了 clean_data 函数,用于去除空值和重复值。

数据增强:增加了 augment_data 函数,用于在训练时进行数据增强。

模型选择:

生成对抗网络 (GAN):增加了 Discriminator 类,用于判别生成的图像是否真实。

损失函数:增加了 GAN 损失和 L1 损失,用于训练生成器和判别器。

模型架构设计:

文本编码器:使用预训练的 Transformer 模型(如 BERT)来编码文本描述。

图像生成器:增加了更多的卷积转置层,并使用了批量归一化和激活函数。

多模态融合:将文本特征和图像特征进行有效融合,确保生成的图像与文本描述一致。

训练过程:

损失函数:使用 GAN 损失和 L1 损失,分别用于训练生成器和判别器。

优化算法:使用 Adam 优化器。

训练策略:使用批量归一化、梯度裁剪等技术来稳定训练过程。

正则化:防止过拟合,可以使用 L1/L2 正则化、Dropout 等技术。

python 复制代码
import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
import yaml
import os
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
import random
import numpy as np

# 配置文件加载
def load_config(config_path):
    with open(config_path, 'r', encoding='utf-8') as file:
        config = yaml.safe_load(file)
    return config

# 数据加载
def load_text_data(file_path):
    with open(file_path, 'r', encoding='utf-8') as file:
        text_data = file.readlines()
    return [line.strip() for line in text_data]

# 数据清洗
def clean_data(data):
    # 这里可以添加更多的数据清洗逻辑
    return data.dropna().drop_duplicates()

# 数据增强
def augment_data(image, mode):
    if mode == 'train':
        transform = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.RandomRotation(10),
            transforms.RandomResizedCrop(64, scale=(0.8, 1.0)),
            transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    else:
        transform = transforms.Compose([
            transforms.Resize((64, 64)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    return transform(image)

# 文本编码器
class TextEncoder(nn.Module):
    def __init__(self, model_name):
        super(TextEncoder, self).__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)

    def forward(self, text):
        inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True)
        outputs = self.model(**inputs)
        return outputs.last_hidden_state.mean(dim=1)

# 图像生成器
class ImageGenerator(nn.Module):
    def __init__(self, in_channels):
        super(ImageGenerator, self).__init__()
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(in_channels, 512, kernel_size=4, stride=1, padding=0),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def forward(self, x):
        x = x.view(-1, x.size(1), 1, 1)
        return self.decoder(x)

# 判别器
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.main(x)

# 模型定义
class TextToImageModel(nn.Module):
    def __init__(self, text_encoder_model_name):
        super(TextToImageModel, self).__init__()
        self.text_encoder = TextEncoder(text_encoder_model_name)
        self.image_generator = ImageGenerator(768)  # 768 is the hidden size of BERT

    def forward(self, text):
        text_features = self.text_encoder(text)
        return self.image_generator(text_features)

# 模型加载
def load_model(model_path, text_encoder_model_name):
    model = TextToImageModel(text_encoder_model_name)
    if os.path.exists(model_path):
        model.load_state_dict(torch.load(model_path))
    model.eval()
    return model

# 图像保存
def save_image(image, path):
    if not os.path.exists(os.path.dirname(path)):
        os.makedirs(os.path.dirname(path))
    image.save(path)

# 数据集类
class TextToImageDataset(Dataset):
    def __init__(self, csv_file, transform=None, mode='train'):
        self.data = pd.read_csv(csv_file)
        self.data = clean_data(self.data)
        self.transform = transform
        self.mode = mode

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        text = self.data.iloc[idx]['text']
        image_path = self.data.iloc[idx]['image_path']
        image = Image.open(image_path).convert('RGB')
        if self.transform:
            image = self.transform(image, self.mode)
        return text, image

# 模型训练
def train_model(config):
    transform = transforms.Compose([
        transforms.Resize((64, 64)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = TextToImageDataset(config['training']['dataset_path'], transform=augment_data, mode='train')
    dataloader = DataLoader(dataset, batch_size=config['training']['batch_size'], shuffle=True)

    model = TextToImageModel(config['model']['text_encoder_model_name'])
    discriminator = Discriminator()

    optimizer_g = optim.Adam(model.parameters(), lr=config['training']['learning_rate'])
    optimizer_d = optim.Adam(discriminator.parameters(), lr=config['training']['learning_rate'])

    criterion_gan = nn.BCELoss()
    criterion_l1 = nn.L1Loss()

    for epoch in range(config['training']['epochs']):
        model.train()
        discriminator.train()
        running_loss_g = 0.0
        running_loss_d = 0.0

        for i, (text, images) in enumerate(dataloader):
            real_labels = torch.ones(images.size(0), 1)
            fake_labels = torch.zeros(images.size(0), 1)

            # Train Discriminator
            optimizer_d.zero_grad()
            real_outputs = discriminator(images)
            d_loss_real = criterion_gan(real_outputs, real_labels)

            generated_images = model(text)
            fake_outputs = discriminator(generated_images.detach())
            d_loss_fake = criterion_gan(fake_outputs, fake_labels)

            d_loss = (d_loss_real + d_loss_fake) / 2
            d_loss.backward()
            optimizer_d.step()

            # Train Generator
            optimizer_g.zero_grad()
            generated_images = model(text)
            g_outputs = discriminator(generated_images)
            g_loss_gan = criterion_gan(g_outputs, real_labels)
            g_loss_l1 = criterion_l1(generated_images, images)
            g_loss = g_loss_gan + 100 * g_loss_l1  # Weighted sum of GAN loss and L1 loss
            g_loss.backward()
            optimizer_g.step()

            running_loss_g += g_loss.item()
            running_loss_d += d_loss.item()

        print(f"Epoch {epoch + 1}, Generator Loss: {running_loss_g / len(dataloader)}, Discriminator Loss: {running_loss_d / len(dataloader)}")

    # 保存训练好的模型
    torch.save(model.state_dict(), config['model']['path'])

# 图像生成
def generate_images(model, text_data, output_dir):
    for text in text_data:
        input_tensor = model.text_encoder([text])
        image = model.image_generator(input_tensor)
        image = image.squeeze(0).detach().cpu().numpy()
        image = (image * 127.5 + 127.5).astype('uint8')
        image = Image.fromarray(image.transpose(1, 2, 0))

        # 保存图像
        save_image(image, f"{output_dir}/{text}.png")

# 图形用户界面
class TextToImageGUI:
    def __init__(self, root):
        self.root = root
        self.root.title("文本生成图像")
        self.config = load_config('config.yaml')
        self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'])

        self.text_input = tk.Text(root, height=10, width=50)
        self.text_input.pack(pady=10)

        self.train_button = tk.Button(root, text="训练模型", command=self.train_model)
        self.train_button.pack(pady=10)

        self.generate_button = tk.Button(root, text="生成图像", command=self.generate_image)
        self.generate_button.pack(pady=10)

        self.image_label = tk.Label(root)
        self.image_label.pack(pady=10)

    def train_model(self):
        train_model(self.config)
        self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'])
        messagebox.showinfo("成功", "模型训练完成")

    def generate_image(self):
        text = self.text_input.get("1.0", tk.END).strip()
        if not text:
            messagebox.showwarning("警告", "请输入文本")
            return

        input_tensor = self.model.text_encoder([text])
        image = self.model.image_generator(input_tensor)
        image = image.squeeze(0).detach().cpu().numpy()
        image = (image * 127.5 + 127.5).astype('uint8')
        image = Image.fromarray(image.transpose(1, 2, 0))

        # 显示图像
        img_tk = ImageTk.PhotoImage(image)
        self.image_label.config(image=img_tk)
        self.image_label.image = img_tk

        # 保存图像
        save_image(image, f"{self.config['data']['output_dir']}/{text}.png")
        messagebox.showinfo("成功", "图像已生成并保存")

if __name__ == "__main__":
    config = load_config('config.yaml')

    # 加载模型
    model = load_model(config['model']['path'], config['model']['text_encoder_model_name'])

    # 加载文本数据
    text_data = load_text_data(config['data']['input_file'])

    # 生成图像
    generate_images(model, text_data, config['data']['output_dir'])

    # 启动图形用户界面
    root = tk.Tk()
    app = TextToImageGUI(root)
    root.mainloop()

希望这些改进能帮助你更好地实现文本生成图像的功能。如果有任何问题或需要进一步的帮助,请随时告诉我!

相关推荐
盏灯10 分钟前
Trae SOLO 游戏 —— 🐾🐱🐾猫咪追蝌蚪🐸
人工智能·trae
lisuwen11614 分钟前
AI三国杀:马斯克炮轰苹果“偏袒”OpenAI,Grok与ChatGPT的应用商店战争揭秘
人工智能·chatgpt
暮小暮19 分钟前
从ChatGPT到智能助手:Agent智能体如何颠覆AI应用
人工智能·深度学习·神经网络·ai·语言模型·chatgpt
聚客AI22 分钟前
✅响应时间从8秒到3秒:AI知识库性能优化避坑指南
人工智能·llm·agent
Jinkxs25 分钟前
告别“测试滞后”:AI实时测试工具在敏捷开发中的落地经验
人工智能·测试工具·敏捷流程
七元权26 分钟前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
John_ToDebug1 小时前
大模型提示词(Prompt)终极指南:从原理到实战,让AI输出质量提升300%
人工智能·chatgpt·prompt
居然JuRan1 小时前
LangGraph从0到1:开启大模型开发新征程
人工智能
双向331 小时前
实战测试:多模态AI在文档解析、图表分析中的准确率对比
人工智能
用户5191495848451 小时前
1989年的模糊测试技术如何在2018年仍发现Linux漏洞
人工智能·aigc