伏羲0.06(文生图)

主要改进点:

数据准备:

数据清洗:增加了 clean_data 函数,用于去除空值和重复值。

数据增强:增加了 augment_data 函数,用于在训练时进行数据增强。

模型选择:

生成对抗网络 (GAN):增加了 Discriminator 类,用于判别生成的图像是否真实。

损失函数:增加了 GAN 损失和 L1 损失,用于训练生成器和判别器。

模型架构设计:

文本编码器:使用预训练的 Transformer 模型(如 BERT)来编码文本描述。

图像生成器:增加了更多的卷积转置层,并使用了批量归一化和激活函数。

多模态融合:将文本特征和图像特征进行有效融合,确保生成的图像与文本描述一致。

训练过程:

损失函数:使用 GAN 损失和 L1 损失,分别用于训练生成器和判别器。

优化算法:使用 Adam 优化器。

训练策略:使用批量归一化、梯度裁剪等技术来稳定训练过程。

正则化:防止过拟合,可以使用 L1/L2 正则化、Dropout 等技术。

python 复制代码
import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
import yaml
import os
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
import random
import numpy as np

# 配置文件加载
def load_config(config_path):
    with open(config_path, 'r', encoding='utf-8') as file:
        config = yaml.safe_load(file)
    return config

# 数据加载
def load_text_data(file_path):
    with open(file_path, 'r', encoding='utf-8') as file:
        text_data = file.readlines()
    return [line.strip() for line in text_data]

# 数据清洗
def clean_data(data):
    # 这里可以添加更多的数据清洗逻辑
    return data.dropna().drop_duplicates()

# 数据增强
def augment_data(image, mode):
    if mode == 'train':
        transform = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.RandomRotation(10),
            transforms.RandomResizedCrop(64, scale=(0.8, 1.0)),
            transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    else:
        transform = transforms.Compose([
            transforms.Resize((64, 64)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    return transform(image)

# 文本编码器
class TextEncoder(nn.Module):
    def __init__(self, model_name):
        super(TextEncoder, self).__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)

    def forward(self, text):
        inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True)
        outputs = self.model(**inputs)
        return outputs.last_hidden_state.mean(dim=1)

# 图像生成器
class ImageGenerator(nn.Module):
    def __init__(self, in_channels):
        super(ImageGenerator, self).__init__()
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(in_channels, 512, kernel_size=4, stride=1, padding=0),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def forward(self, x):
        x = x.view(-1, x.size(1), 1, 1)
        return self.decoder(x)

# 判别器
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.main(x)

# 模型定义
class TextToImageModel(nn.Module):
    def __init__(self, text_encoder_model_name):
        super(TextToImageModel, self).__init__()
        self.text_encoder = TextEncoder(text_encoder_model_name)
        self.image_generator = ImageGenerator(768)  # 768 is the hidden size of BERT

    def forward(self, text):
        text_features = self.text_encoder(text)
        return self.image_generator(text_features)

# 模型加载
def load_model(model_path, text_encoder_model_name):
    model = TextToImageModel(text_encoder_model_name)
    if os.path.exists(model_path):
        model.load_state_dict(torch.load(model_path))
    model.eval()
    return model

# 图像保存
def save_image(image, path):
    if not os.path.exists(os.path.dirname(path)):
        os.makedirs(os.path.dirname(path))
    image.save(path)

# 数据集类
class TextToImageDataset(Dataset):
    def __init__(self, csv_file, transform=None, mode='train'):
        self.data = pd.read_csv(csv_file)
        self.data = clean_data(self.data)
        self.transform = transform
        self.mode = mode

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        text = self.data.iloc[idx]['text']
        image_path = self.data.iloc[idx]['image_path']
        image = Image.open(image_path).convert('RGB')
        if self.transform:
            image = self.transform(image, self.mode)
        return text, image

# 模型训练
def train_model(config):
    transform = transforms.Compose([
        transforms.Resize((64, 64)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = TextToImageDataset(config['training']['dataset_path'], transform=augment_data, mode='train')
    dataloader = DataLoader(dataset, batch_size=config['training']['batch_size'], shuffle=True)

    model = TextToImageModel(config['model']['text_encoder_model_name'])
    discriminator = Discriminator()

    optimizer_g = optim.Adam(model.parameters(), lr=config['training']['learning_rate'])
    optimizer_d = optim.Adam(discriminator.parameters(), lr=config['training']['learning_rate'])

    criterion_gan = nn.BCELoss()
    criterion_l1 = nn.L1Loss()

    for epoch in range(config['training']['epochs']):
        model.train()
        discriminator.train()
        running_loss_g = 0.0
        running_loss_d = 0.0

        for i, (text, images) in enumerate(dataloader):
            real_labels = torch.ones(images.size(0), 1)
            fake_labels = torch.zeros(images.size(0), 1)

            # Train Discriminator
            optimizer_d.zero_grad()
            real_outputs = discriminator(images)
            d_loss_real = criterion_gan(real_outputs, real_labels)

            generated_images = model(text)
            fake_outputs = discriminator(generated_images.detach())
            d_loss_fake = criterion_gan(fake_outputs, fake_labels)

            d_loss = (d_loss_real + d_loss_fake) / 2
            d_loss.backward()
            optimizer_d.step()

            # Train Generator
            optimizer_g.zero_grad()
            generated_images = model(text)
            g_outputs = discriminator(generated_images)
            g_loss_gan = criterion_gan(g_outputs, real_labels)
            g_loss_l1 = criterion_l1(generated_images, images)
            g_loss = g_loss_gan + 100 * g_loss_l1  # Weighted sum of GAN loss and L1 loss
            g_loss.backward()
            optimizer_g.step()

            running_loss_g += g_loss.item()
            running_loss_d += d_loss.item()

        print(f"Epoch {epoch + 1}, Generator Loss: {running_loss_g / len(dataloader)}, Discriminator Loss: {running_loss_d / len(dataloader)}")

    # 保存训练好的模型
    torch.save(model.state_dict(), config['model']['path'])

# 图像生成
def generate_images(model, text_data, output_dir):
    for text in text_data:
        input_tensor = model.text_encoder([text])
        image = model.image_generator(input_tensor)
        image = image.squeeze(0).detach().cpu().numpy()
        image = (image * 127.5 + 127.5).astype('uint8')
        image = Image.fromarray(image.transpose(1, 2, 0))

        # 保存图像
        save_image(image, f"{output_dir}/{text}.png")

# 图形用户界面
class TextToImageGUI:
    def __init__(self, root):
        self.root = root
        self.root.title("文本生成图像")
        self.config = load_config('config.yaml')
        self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'])

        self.text_input = tk.Text(root, height=10, width=50)
        self.text_input.pack(pady=10)

        self.train_button = tk.Button(root, text="训练模型", command=self.train_model)
        self.train_button.pack(pady=10)

        self.generate_button = tk.Button(root, text="生成图像", command=self.generate_image)
        self.generate_button.pack(pady=10)

        self.image_label = tk.Label(root)
        self.image_label.pack(pady=10)

    def train_model(self):
        train_model(self.config)
        self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'])
        messagebox.showinfo("成功", "模型训练完成")

    def generate_image(self):
        text = self.text_input.get("1.0", tk.END).strip()
        if not text:
            messagebox.showwarning("警告", "请输入文本")
            return

        input_tensor = self.model.text_encoder([text])
        image = self.model.image_generator(input_tensor)
        image = image.squeeze(0).detach().cpu().numpy()
        image = (image * 127.5 + 127.5).astype('uint8')
        image = Image.fromarray(image.transpose(1, 2, 0))

        # 显示图像
        img_tk = ImageTk.PhotoImage(image)
        self.image_label.config(image=img_tk)
        self.image_label.image = img_tk

        # 保存图像
        save_image(image, f"{self.config['data']['output_dir']}/{text}.png")
        messagebox.showinfo("成功", "图像已生成并保存")

if __name__ == "__main__":
    config = load_config('config.yaml')

    # 加载模型
    model = load_model(config['model']['path'], config['model']['text_encoder_model_name'])

    # 加载文本数据
    text_data = load_text_data(config['data']['input_file'])

    # 生成图像
    generate_images(model, text_data, config['data']['output_dir'])

    # 启动图形用户界面
    root = tk.Tk()
    app = TextToImageGUI(root)
    root.mainloop()

希望这些改进能帮助你更好地实现文本生成图像的功能。如果有任何问题或需要进一步的帮助,请随时告诉我!

相关推荐
浣熊-论文指导2 小时前
聚类与Transformer融合的六大创新方向
论文阅读·深度学习·机器学习·transformer·聚类
AKAMAI2 小时前
Fermyon推出全球最快边缘计算平台:WebAssembly先驱携手Akamai云驱动无服务器技术新浪潮
人工智能·云计算·边缘计算
云雾J视界3 小时前
TMS320C6000 VLIW架构并行编程实战:加速AI边缘计算推理性能
人工智能·架构·边缘计算·dsp·vliw·tms320c6000
想ai抽3 小时前
基于AI Agent的数据资产自动化治理实验
人工智能·langchain·embedding
小马过河R4 小时前
AIGC视频生成之Deepseek、百度妙笔组合实战小案例
人工智能·深度学习·计算机视觉·百度·aigc
june-Dai Yi4 小时前
免费的大语言模型API接口
人工智能·语言模型·自然语言处理·chatgpt·api接口
东经116度4 小时前
生成对抗网络(GAN)
深度学习·gan·模式崩塌
王哈哈^_^5 小时前
【数据集】【YOLO】【目标检测】农作物病害数据集 11498 张,病害检测,YOLOv8农作物病虫害识别系统实战训推教程。
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·1024程序员节
数据库安全5 小时前
牛品推荐|分类分级效能飞跃:美创智能数据安全分类分级平台
大数据·人工智能·分类
却道天凉_好个秋5 小时前
卷积神经网络CNN(六):卷积、归一化与ReLU总结
人工智能·神经网络·cnn