伏羲0.06(文生图)

主要改进点:

数据准备:

数据清洗:增加了 clean_data 函数,用于去除空值和重复值。

数据增强:增加了 augment_data 函数,用于在训练时进行数据增强。

模型选择:

生成对抗网络 (GAN):增加了 Discriminator 类,用于判别生成的图像是否真实。

损失函数:增加了 GAN 损失和 L1 损失,用于训练生成器和判别器。

模型架构设计:

文本编码器:使用预训练的 Transformer 模型(如 BERT)来编码文本描述。

图像生成器:增加了更多的卷积转置层,并使用了批量归一化和激活函数。

多模态融合:将文本特征和图像特征进行有效融合,确保生成的图像与文本描述一致。

训练过程:

损失函数:使用 GAN 损失和 L1 损失,分别用于训练生成器和判别器。

优化算法:使用 Adam 优化器。

训练策略:使用批量归一化、梯度裁剪等技术来稳定训练过程。

正则化:防止过拟合,可以使用 L1/L2 正则化、Dropout 等技术。

python 复制代码
import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision.transforms as transforms
import yaml
import os
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModel
import random
import numpy as np

# 配置文件加载
def load_config(config_path):
    with open(config_path, 'r', encoding='utf-8') as file:
        config = yaml.safe_load(file)
    return config

# 数据加载
def load_text_data(file_path):
    with open(file_path, 'r', encoding='utf-8') as file:
        text_data = file.readlines()
    return [line.strip() for line in text_data]

# 数据清洗
def clean_data(data):
    # 这里可以添加更多的数据清洗逻辑
    return data.dropna().drop_duplicates()

# 数据增强
def augment_data(image, mode):
    if mode == 'train':
        transform = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.RandomRotation(10),
            transforms.RandomResizedCrop(64, scale=(0.8, 1.0)),
            transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    else:
        transform = transforms.Compose([
            transforms.Resize((64, 64)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    return transform(image)

# 文本编码器
class TextEncoder(nn.Module):
    def __init__(self, model_name):
        super(TextEncoder, self).__init__()
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)

    def forward(self, text):
        inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True)
        outputs = self.model(**inputs)
        return outputs.last_hidden_state.mean(dim=1)

# 图像生成器
class ImageGenerator(nn.Module):
    def __init__(self, in_channels):
        super(ImageGenerator, self).__init__()
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(in_channels, 512, kernel_size=4, stride=1, padding=0),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
            nn.Tanh()
        )

    def forward(self, x):
        x = x.view(-1, x.size(1), 1, 1)
        return self.decoder(x)

# 判别器
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.main = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.main(x)

# 模型定义
class TextToImageModel(nn.Module):
    def __init__(self, text_encoder_model_name):
        super(TextToImageModel, self).__init__()
        self.text_encoder = TextEncoder(text_encoder_model_name)
        self.image_generator = ImageGenerator(768)  # 768 is the hidden size of BERT

    def forward(self, text):
        text_features = self.text_encoder(text)
        return self.image_generator(text_features)

# 模型加载
def load_model(model_path, text_encoder_model_name):
    model = TextToImageModel(text_encoder_model_name)
    if os.path.exists(model_path):
        model.load_state_dict(torch.load(model_path))
    model.eval()
    return model

# 图像保存
def save_image(image, path):
    if not os.path.exists(os.path.dirname(path)):
        os.makedirs(os.path.dirname(path))
    image.save(path)

# 数据集类
class TextToImageDataset(Dataset):
    def __init__(self, csv_file, transform=None, mode='train'):
        self.data = pd.read_csv(csv_file)
        self.data = clean_data(self.data)
        self.transform = transform
        self.mode = mode

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        text = self.data.iloc[idx]['text']
        image_path = self.data.iloc[idx]['image_path']
        image = Image.open(image_path).convert('RGB')
        if self.transform:
            image = self.transform(image, self.mode)
        return text, image

# 模型训练
def train_model(config):
    transform = transforms.Compose([
        transforms.Resize((64, 64)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = TextToImageDataset(config['training']['dataset_path'], transform=augment_data, mode='train')
    dataloader = DataLoader(dataset, batch_size=config['training']['batch_size'], shuffle=True)

    model = TextToImageModel(config['model']['text_encoder_model_name'])
    discriminator = Discriminator()

    optimizer_g = optim.Adam(model.parameters(), lr=config['training']['learning_rate'])
    optimizer_d = optim.Adam(discriminator.parameters(), lr=config['training']['learning_rate'])

    criterion_gan = nn.BCELoss()
    criterion_l1 = nn.L1Loss()

    for epoch in range(config['training']['epochs']):
        model.train()
        discriminator.train()
        running_loss_g = 0.0
        running_loss_d = 0.0

        for i, (text, images) in enumerate(dataloader):
            real_labels = torch.ones(images.size(0), 1)
            fake_labels = torch.zeros(images.size(0), 1)

            # Train Discriminator
            optimizer_d.zero_grad()
            real_outputs = discriminator(images)
            d_loss_real = criterion_gan(real_outputs, real_labels)

            generated_images = model(text)
            fake_outputs = discriminator(generated_images.detach())
            d_loss_fake = criterion_gan(fake_outputs, fake_labels)

            d_loss = (d_loss_real + d_loss_fake) / 2
            d_loss.backward()
            optimizer_d.step()

            # Train Generator
            optimizer_g.zero_grad()
            generated_images = model(text)
            g_outputs = discriminator(generated_images)
            g_loss_gan = criterion_gan(g_outputs, real_labels)
            g_loss_l1 = criterion_l1(generated_images, images)
            g_loss = g_loss_gan + 100 * g_loss_l1  # Weighted sum of GAN loss and L1 loss
            g_loss.backward()
            optimizer_g.step()

            running_loss_g += g_loss.item()
            running_loss_d += d_loss.item()

        print(f"Epoch {epoch + 1}, Generator Loss: {running_loss_g / len(dataloader)}, Discriminator Loss: {running_loss_d / len(dataloader)}")

    # 保存训练好的模型
    torch.save(model.state_dict(), config['model']['path'])

# 图像生成
def generate_images(model, text_data, output_dir):
    for text in text_data:
        input_tensor = model.text_encoder([text])
        image = model.image_generator(input_tensor)
        image = image.squeeze(0).detach().cpu().numpy()
        image = (image * 127.5 + 127.5).astype('uint8')
        image = Image.fromarray(image.transpose(1, 2, 0))

        # 保存图像
        save_image(image, f"{output_dir}/{text}.png")

# 图形用户界面
class TextToImageGUI:
    def __init__(self, root):
        self.root = root
        self.root.title("文本生成图像")
        self.config = load_config('config.yaml')
        self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'])

        self.text_input = tk.Text(root, height=10, width=50)
        self.text_input.pack(pady=10)

        self.train_button = tk.Button(root, text="训练模型", command=self.train_model)
        self.train_button.pack(pady=10)

        self.generate_button = tk.Button(root, text="生成图像", command=self.generate_image)
        self.generate_button.pack(pady=10)

        self.image_label = tk.Label(root)
        self.image_label.pack(pady=10)

    def train_model(self):
        train_model(self.config)
        self.model = load_model(self.config['model']['path'], self.config['model']['text_encoder_model_name'])
        messagebox.showinfo("成功", "模型训练完成")

    def generate_image(self):
        text = self.text_input.get("1.0", tk.END).strip()
        if not text:
            messagebox.showwarning("警告", "请输入文本")
            return

        input_tensor = self.model.text_encoder([text])
        image = self.model.image_generator(input_tensor)
        image = image.squeeze(0).detach().cpu().numpy()
        image = (image * 127.5 + 127.5).astype('uint8')
        image = Image.fromarray(image.transpose(1, 2, 0))

        # 显示图像
        img_tk = ImageTk.PhotoImage(image)
        self.image_label.config(image=img_tk)
        self.image_label.image = img_tk

        # 保存图像
        save_image(image, f"{self.config['data']['output_dir']}/{text}.png")
        messagebox.showinfo("成功", "图像已生成并保存")

if __name__ == "__main__":
    config = load_config('config.yaml')

    # 加载模型
    model = load_model(config['model']['path'], config['model']['text_encoder_model_name'])

    # 加载文本数据
    text_data = load_text_data(config['data']['input_file'])

    # 生成图像
    generate_images(model, text_data, config['data']['output_dir'])

    # 启动图形用户界面
    root = tk.Tk()
    app = TextToImageGUI(root)
    root.mainloop()

希望这些改进能帮助你更好地实现文本生成图像的功能。如果有任何问题或需要进一步的帮助,请随时告诉我!

相关推荐
szxinmai主板定制专家3 分钟前
基于TI AM6442+FPGA解决方案,支持6网口,4路CAN,8个串口
arm开发·人工智能·fpga开发
龙湾开发23 分钟前
轻量级高性能推理引擎MNN 学习笔记 02.MNN主要API
人工智能·笔记·学习·机器学习·mnn
CopyLower1 小时前
Java与AI技术结合:从机器学习到生成式AI的实践
java·人工智能·机器学习
workflower1 小时前
使用谱聚类将相似度矩阵分为2类
人工智能·深度学习·算法·机器学习·设计模式·软件工程·软件需求
jndingxin1 小时前
OpenCV CUDA 模块中在 GPU 上对图像或矩阵进行 翻转(镜像)操作的一个函数 flip()
人工智能·opencv
囚生CY1 小时前
【速写】TRL:Trainer的细节与思考(PPO/DPO+LoRA可行性)
人工智能
杨德兴1 小时前
3.3 阶数的作用
人工智能·学习
望获linux1 小时前
医疗实时操作系统方案:手术机器人的微秒级运动控制
人工智能·机器人·实时操作系统·rtos·嵌入式软件·医疗自动化
仓颉编程语言2 小时前
仓颉Magic亮相GOSIM AI Paris 2025:掀起开源AI框架新热潮
人工智能·华为·开源·鸿蒙·仓颉编程语言
攻城狮7号2 小时前
一文理清人工智能,机器学习,深度学习的概念
人工智能·深度学习·机器学习·ai