【新界面】基于卷积神经网络的垃圾分类(Matlab)

基于CNN的垃圾识别与分类GUI【新界面】

有需要可直接联系我,基本都在在线,能秒回!可加我看演示视频,不懂可以远程教学

1.此项目设计包括两份完整的源代码,有GUI界面的代码和无GUI界面系统的代码。

(以下部分展示的是最终有GUI界面的垃圾分类)

2.完整图片数据集

包括四类垃圾:可回收、有害、厨余和其他垃圾,每类垃圾各2000张左右的图片数据集,在训练模型的时候,总共就用了1万多张的数据图片集去进行训练。

(先展示最终效果)


一、 研究背景及部分程序图像数据集

垃圾分类和治理已经成为了当今社会中一个非常重要的问题,随着人民生活水平和消费水平的提高,在大量消耗资源,提高生产规模的同时,日常垃圾的产生也变得越来越多,垃圾种类也变得越来越多,材质及外形各异而且在不同场景下的类别划分的差异也很大。

二、 相关技术及研究流程图

2.1卷积神经网络

CNN由多个层组成,主要有卷积层、池化层、全连接层,信息在这些层之间传递。卷积层与池化层主要负责特征的识别与提取,而全连接层则将这些特征转化为不同类别的概率。一般来说,大部分的层是将输入图像转换为一组特征,最后几层使用这些特征执行分类。

2.2 程序的研究流程

三、 训练过程及程序实现效果展示

3.1CNN神经网络训练

训练的过程中可以同步看到准确度和损失值曲线的变化,准确度会越来越高,损失值会越来月底!随着悬链迭代步数的增加,准确率曲线呈现明显的上升趋势,准确度趋于91%,损失值随着准确度的增加呈现明显的下降趋势,本次训练耗时非常长!由准确度曲线可知,本研究自定义网络的识别率达到了91%。

3.2程序的实验过程及结果

以下将一一展示GUI界面的垃圾分类实验的结果:

首先是加载网络,导入设置好的卷积网络

接下来将准备好的1万多张垃圾数据集载入到系统中,包括可回收,其他,厨余和有害,所有图片载入,为网络训练做准备!

经过长时间的训练之后,模型将自动生成,并保存到同一个文件夹里面!

-----------------------------------接下来开始最终的实验测试---------------------------------

-----以上为基于卷积神经网络的垃圾分类系统的程序的展示。

相关推荐
具***711 小时前
基于STM32和FreeRTOS的智能家居设计之路
计算机视觉
dagouaofei11 小时前
AI自动生成PPT工具对比分析,效率差距明显
人工智能·python·powerpoint
嗷嗷哦润橘_11 小时前
AI Agent学习:MetaGPT之我的工作
人工智能·学习·flask
PPIO派欧云11 小时前
PPIO上线阿里Wan 2.6:制作电影级AI视频,对标Sora2
人工智能
火山kim12 小时前
经典论文研读报告:DAGGER (Dataset Aggregation)
人工智能·深度学习·机器学习
Coding茶水间12 小时前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
檐下翻书17312 小时前
算法透明度审核:AI 决策的 “黑箱” 如何被打开?
人工智能
undsky_12 小时前
【RuoYi-SpringBoot3-Pro】:接入 AI 对话能力
人工智能·spring boot·后端·ai·ruoyi
网易伏羲12 小时前
网易伏羲受邀出席2025具身智能人形机器人年度盛会,并荣获“偃师·场景应用灵智奖
人工智能·群体智能·具身智能·游戏ai·网易伏羲·网易灵动·网易有灵智能体
搬砖者(视觉算法工程师)12 小时前
什么是无监督学习?理解人工智能中无监督学习的机制、各类算法的类型与应用
人工智能