【新界面】基于卷积神经网络的垃圾分类(Matlab)

基于CNN的垃圾识别与分类GUI【新界面】

有需要可直接联系我,基本都在在线,能秒回!可加我看演示视频,不懂可以远程教学

1.此项目设计包括两份完整的源代码,有GUI界面的代码和无GUI界面系统的代码。

(以下部分展示的是最终有GUI界面的垃圾分类)

2.完整图片数据集

包括四类垃圾:可回收、有害、厨余和其他垃圾,每类垃圾各2000张左右的图片数据集,在训练模型的时候,总共就用了1万多张的数据图片集去进行训练。

(先展示最终效果)


一、 研究背景及部分程序图像数据集

垃圾分类和治理已经成为了当今社会中一个非常重要的问题,随着人民生活水平和消费水平的提高,在大量消耗资源,提高生产规模的同时,日常垃圾的产生也变得越来越多,垃圾种类也变得越来越多,材质及外形各异而且在不同场景下的类别划分的差异也很大。

二、 相关技术及研究流程图

2.1卷积神经网络

CNN由多个层组成,主要有卷积层、池化层、全连接层,信息在这些层之间传递。卷积层与池化层主要负责特征的识别与提取,而全连接层则将这些特征转化为不同类别的概率。一般来说,大部分的层是将输入图像转换为一组特征,最后几层使用这些特征执行分类。

2.2 程序的研究流程

三、 训练过程及程序实现效果展示

3.1CNN神经网络训练

训练的过程中可以同步看到准确度和损失值曲线的变化,准确度会越来越高,损失值会越来月底!随着悬链迭代步数的增加,准确率曲线呈现明显的上升趋势,准确度趋于91%,损失值随着准确度的增加呈现明显的下降趋势,本次训练耗时非常长!由准确度曲线可知,本研究自定义网络的识别率达到了91%。

3.2程序的实验过程及结果

以下将一一展示GUI界面的垃圾分类实验的结果:

首先是加载网络,导入设置好的卷积网络

接下来将准备好的1万多张垃圾数据集载入到系统中,包括可回收,其他,厨余和有害,所有图片载入,为网络训练做准备!

经过长时间的训练之后,模型将自动生成,并保存到同一个文件夹里面!

-----------------------------------接下来开始最终的实验测试---------------------------------

-----以上为基于卷积神经网络的垃圾分类系统的程序的展示。

相关推荐
杭州泽沃电子科技有限公司14 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao16 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北1218 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz258878218 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰18 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技18 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
ZCXZ12385296a18 小时前
YOLOv26在水果图像识别与分类中的应用:苹果、猕猴桃、橙子和红毛丹的检测研究
yolo·分类·数据挖掘
FreeBuf_18 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
weisian15119 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai19 小时前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能