PPO系列3 - PPO原理

On Policy:

采集数据的模型,和训练的模型,是同一个。缺点:慢,生成一批样本数据,训练一次,又要重新生成下一批。

Off Policy:

采集数据的模型,和训练的模型,不是同一个。有点:快,生成一批样本数据,可以供训练多次。

例子:

On Policy: 小明上课玩手机,老师批评了小明,小明做了改正不玩手机了。行为是小明产生的,改正也是小明做的,所以是On Policy。

Off Policy: 小明上课玩手机,老师批评了小明,和小明同样喜欢上课玩儿手机的小王,看到小明因为这个被批评后,做了改正不玩手机了。行为是小明产生的,改正是小王做的,所以是Off Policy。

重要性采样

从最开始的x服从p分布,转化到x服从q分布。

把重要性采样,用在GAE强化学习上:

以上就是PPO的梯度。

以下就是PPO的损失函数:

在参考模型上进行采样,并且A里的状态价值V也是用参考模型的。

训练模型和参考模型,不能偏差过大

例子:如果小王是成绩好的学生,那么,差生小明因为考试经常交白卷被老师批评,这件事被小王看到,则对小王影响不大,小王没啥要改正的地方。只有当小王也是差生也有时会交白卷,此事才对小王有警示作用,促其改正。

加约束,有2种方式:

第1个是把KL散度加到loss里。(2个分布完全相等时,KL散度为0;差异越大,KL散度越大)

第2个是加约束,P比值,不能超出一个范围。

相关推荐
IT猿手7 小时前
强化学习路径规划:基于SARSA算法的移动机器人路径规划,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码
android·算法·机器学习·matlab·迁移学习·强化学习·多目标优化
smartcat201011 小时前
PPO系列4 - Reward模型训练
强化学习
不去幼儿园21 小时前
【强化学习】策略梯度---REINFORCE算法
人工智能·python·算法·机器学习·强化学习
不去幼儿园6 天前
【强化学习】策略梯度(Policy Gradient,PG)算法
人工智能·python·算法·机器学习·强化学习
audyxiao0017 天前
强化学习新突破:情节记忆与奖励机制引领多智能体协作
人工智能·深度学习·神经网络·强化学习
许小禾上学记12 天前
李宏毅深度强化学习入门笔记:Actor-Critic
笔记·深度学习·强化学习·李宏毅
liuhui24416 天前
强化学习导论 -章9 基于函数逼近的同轨策略预测
人工智能·决策树·机器学习·强化学习
不去幼儿园16 天前
【RL Base】强化学习核心算法:深度Q网络(DQN)算法
人工智能·python·算法·机器学习·强化学习
不去幼儿园20 天前
【RL Base】多级反馈队列(MFQ)算法
人工智能·python·算法·机器学习·强化学习