PPO系列3 - PPO原理

On Policy:

采集数据的模型,和训练的模型,是同一个。缺点:慢,生成一批样本数据,训练一次,又要重新生成下一批。

Off Policy:

采集数据的模型,和训练的模型,不是同一个。有点:快,生成一批样本数据,可以供训练多次。

例子:

On Policy: 小明上课玩手机,老师批评了小明,小明做了改正不玩手机了。行为是小明产生的,改正也是小明做的,所以是On Policy。

Off Policy: 小明上课玩手机,老师批评了小明,和小明同样喜欢上课玩儿手机的小王,看到小明因为这个被批评后,做了改正不玩手机了。行为是小明产生的,改正是小王做的,所以是Off Policy。

重要性采样

从最开始的x服从p分布,转化到x服从q分布。

把重要性采样,用在GAE强化学习上:

以上就是PPO的梯度。

以下就是PPO的损失函数:

在参考模型上进行采样,并且A里的状态价值V也是用参考模型的。

训练模型和参考模型,不能偏差过大

例子:如果小王是成绩好的学生,那么,差生小明因为考试经常交白卷被老师批评,这件事被小王看到,则对小王影响不大,小王没啥要改正的地方。只有当小王也是差生也有时会交白卷,此事才对小王有警示作用,促其改正。

加约束,有2种方式:

第1个是把KL散度加到loss里。(2个分布完全相等时,KL散度为0;差异越大,KL散度越大)

第2个是加约束,P比值,不能超出一个范围。

相关推荐
ziix3 天前
多源信息融合智能投资【“图神经网络+强化学习“的融合架构】【低配显卡正常运行】
人工智能·深度学习·神经网络·强化学习·图神经网络·gnn
陈晨辰熟稳重3 天前
20250704-基于强化学习在云计算环境中的虚拟机资源调度研究
云计算·强化学习·资源调度
阿里云大数据AI技术4 天前
训练效率提升100%!阿里云后训练全栈解决方案发布实录
大数据·人工智能·强化学习
静心问道5 天前
OAIF:基于在线 AI 反馈的语言模型直接对齐
人工智能·机器学习·强化学习·ai技术应用
静心问道9 天前
CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界
人工智能·强化学习·ai技术应用
许愿与你永世安宁11 天前
强化学习 (11)随机近似
人工智能·算法·强化学习·梯度下降·随机近似
辰尘_星启13 天前
【机器学习】反向传播如何求梯度(公式推导)
人工智能·深度学习·机器学习·强化学习·梯度下降·反向传播
前端工作日常14 天前
我学习到的“伪勤奋”
强化学习
大千AI助手16 天前
RLHF:人类反馈强化学习 | 对齐AI与人类价值观的核心引擎
人工智能·深度学习·算法·机器学习·强化学习·rlhf·人类反馈强化学习
阿里云大数据AI技术16 天前
Post-Training on PAI (3): 自研高性能强化学习框架PAI-ChatLearn
人工智能·开源·强化学习