转置卷积(Transposed Convolution)的简单理解运用

转置卷积(也叫反卷积、上采样卷积)是卷积神经网络中常用的操作,尤其在生成模型(如生成对抗网络、U-Net)中用于增加特征图的空间维度。

简单地说,转置卷积是通过插值和卷积操作将较小的输入张量"放大",生成一个更大的输出张量。

输出尺寸计算公式:

  • H_inW_in 是输入特征图的高和宽。
  • K_hK_w 是卷积核的高和宽。
  • S 是步幅。
  • P 是填充。
  • O_p 是输出填充。

|-------|--------------------------|----------------------------|
| 特性 | 转置卷积 (ConvTranspose2d) | Upsample / interpolate |
| 方法类型 | 学习型方法,通过训练卷积核 | 非学习型方法,基于插值规则 |
| 实现原理 | 插值 + 卷积 | 仅插值,常见插值方法包括最近邻、双线性等 |
| 训练过程 | 卷积核是可训练的,网络通过学习来优化上采样的效果 | 不涉及训练,插值固定 |
| 输出的质量 | 生成更自然、更细致的上采样图像,适合生成任务 | 输出图像质量与插值方法有关,可能没有转置卷积细致 |
| 计算速度 | 较慢,涉及卷积操作和反向传播 | 非常快,直接通过插值进行上采样 |
| 应用场景 | GAN、U-Net、图像生成等生成任务 | 图像放大、简单的上采样任务 |

实例:

python 复制代码
import torch
import torch.nn as nn

# 转置卷积层,包含额外的输出填充
conv_transpose = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=2, padding=1, output_padding=1)

# 输入图像:1x1x4x4
input_tensor = torch.tensor([[[[1.0, 2.0, 3.0, 4.0],
                              [5.0, 6.0, 7.0, 8.0],
                              [9.0, 10.0, 11.0, 12.0],
                              [13.0, 14.0, 15.0, 16.0]]]], dtype=torch.float32)

# 应用转置卷积
output_tensor = conv_transpose(input_tensor)

# 输出张量的形状
print(f"Input shape: {input_tensor.shape}")
print(f"Output shape after ConvTranspose2d: {output_tensor.shape}")

输出:

Input shape: torch.Size([1, 1, 4, 4])

Output shape after ConvTranspose2d: torch.Size([1, 1, 8, 8])

深入理解原理:转置卷积(Transposed Convolution)-CSDN博客

视频讲解:

相关推荐
珠海西格电力2 小时前
零碳园区有哪些政策支持?
大数据·数据库·人工智能·物联网·能源
じ☆冷颜〃2 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
启途AI2 小时前
2026免费好用的AIPPT工具榜:智能演示文稿制作新纪元
人工智能·powerpoint·ppt
TH_12 小时前
35、AI自动化技术与职业变革探讨
运维·人工智能·自动化
楚来客2 小时前
AI基础概念之八:Transformer算法通俗解析
人工智能·算法·transformer
风送雨2 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦3 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
小和尚同志3 小时前
虽然 V0 很强大,但是ScreenshotToCode 依旧有市场
人工智能·aigc
HyperAI超神经3 小时前
【vLLM 学习】Rlhf
人工智能·深度学习·学习·机器学习·vllm
芯盾时代3 小时前
石油化工行业网络风险解决方案
网络·人工智能·信息安全