转置卷积(Transposed Convolution)的简单理解运用

转置卷积(也叫反卷积、上采样卷积)是卷积神经网络中常用的操作,尤其在生成模型(如生成对抗网络、U-Net)中用于增加特征图的空间维度。

简单地说,转置卷积是通过插值和卷积操作将较小的输入张量"放大",生成一个更大的输出张量。

输出尺寸计算公式:

  • H_inW_in 是输入特征图的高和宽。
  • K_hK_w 是卷积核的高和宽。
  • S 是步幅。
  • P 是填充。
  • O_p 是输出填充。

|-------|--------------------------|----------------------------|
| 特性 | 转置卷积 (ConvTranspose2d) | Upsample / interpolate |
| 方法类型 | 学习型方法,通过训练卷积核 | 非学习型方法,基于插值规则 |
| 实现原理 | 插值 + 卷积 | 仅插值,常见插值方法包括最近邻、双线性等 |
| 训练过程 | 卷积核是可训练的,网络通过学习来优化上采样的效果 | 不涉及训练,插值固定 |
| 输出的质量 | 生成更自然、更细致的上采样图像,适合生成任务 | 输出图像质量与插值方法有关,可能没有转置卷积细致 |
| 计算速度 | 较慢,涉及卷积操作和反向传播 | 非常快,直接通过插值进行上采样 |
| 应用场景 | GAN、U-Net、图像生成等生成任务 | 图像放大、简单的上采样任务 |

实例:

python 复制代码
import torch
import torch.nn as nn

# 转置卷积层,包含额外的输出填充
conv_transpose = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=2, padding=1, output_padding=1)

# 输入图像:1x1x4x4
input_tensor = torch.tensor([[[[1.0, 2.0, 3.0, 4.0],
                              [5.0, 6.0, 7.0, 8.0],
                              [9.0, 10.0, 11.0, 12.0],
                              [13.0, 14.0, 15.0, 16.0]]]], dtype=torch.float32)

# 应用转置卷积
output_tensor = conv_transpose(input_tensor)

# 输出张量的形状
print(f"Input shape: {input_tensor.shape}")
print(f"Output shape after ConvTranspose2d: {output_tensor.shape}")

输出:

Input shape: torch.Size([1, 1, 4, 4])

Output shape after ConvTranspose2d: torch.Size([1, 1, 8, 8])

深入理解原理:转置卷积(Transposed Convolution)-CSDN博客

视频讲解:

相关推荐
Java后端的Ai之路13 小时前
【AI大模型开发】-RAG多模态详解(通俗易懂)
人工智能·大模型·rag多模态
飞凌嵌入式13 小时前
嵌入式AI领域的主控选择
linux·arm开发·人工智能·嵌入式硬件
_YiFei13 小时前
2026年论文保姆级攻略:降ai率工具深度实测(附免费降ai率避坑指南)
人工智能
一只大侠的侠13 小时前
用PyTorch Lightning快速搭建可复现实验 pipeline
人工智能·pytorch·python
KG_LLM图谱增强大模型13 小时前
[290页电子书]打造企业级知识图谱的实战手册,Neo4j 首席科学家力作!从图数据库基础到图原生机器学习
人工智能·知识图谱·neo4j
无忧智库13 小时前
深度解析:某流域水务集团“数字孪生流域”建设工程可行性研究报告(万字长文)(WORD)
大数据·人工智能
无心水13 小时前
4、Go语言程序实体详解:变量声明与常量应用【初学者指南】
java·服务器·开发语言·人工智能·python·golang·go
一行注释也不写13 小时前
【文本生成】场景化模型选择指南‌
人工智能·aigc
xiaoginshuo13 小时前
2026 AI 智能体开发平台报告:低代码革命驱动企业数字化转型
人工智能·低代码
hjs_deeplearning13 小时前
文献阅读篇#12:自动驾驶中的基础模型:场景生成与场景分析综述(3)
人工智能·机器学习·自动驾驶