转置卷积(Transposed Convolution)的简单理解运用

转置卷积(也叫反卷积、上采样卷积)是卷积神经网络中常用的操作,尤其在生成模型(如生成对抗网络、U-Net)中用于增加特征图的空间维度。

简单地说,转置卷积是通过插值和卷积操作将较小的输入张量"放大",生成一个更大的输出张量。

输出尺寸计算公式:

  • H_inW_in 是输入特征图的高和宽。
  • K_hK_w 是卷积核的高和宽。
  • S 是步幅。
  • P 是填充。
  • O_p 是输出填充。

|-------|--------------------------|----------------------------|
| 特性 | 转置卷积 (ConvTranspose2d) | Upsample / interpolate |
| 方法类型 | 学习型方法,通过训练卷积核 | 非学习型方法,基于插值规则 |
| 实现原理 | 插值 + 卷积 | 仅插值,常见插值方法包括最近邻、双线性等 |
| 训练过程 | 卷积核是可训练的,网络通过学习来优化上采样的效果 | 不涉及训练,插值固定 |
| 输出的质量 | 生成更自然、更细致的上采样图像,适合生成任务 | 输出图像质量与插值方法有关,可能没有转置卷积细致 |
| 计算速度 | 较慢,涉及卷积操作和反向传播 | 非常快,直接通过插值进行上采样 |
| 应用场景 | GAN、U-Net、图像生成等生成任务 | 图像放大、简单的上采样任务 |

实例:

python 复制代码
import torch
import torch.nn as nn

# 转置卷积层,包含额外的输出填充
conv_transpose = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=2, padding=1, output_padding=1)

# 输入图像:1x1x4x4
input_tensor = torch.tensor([[[[1.0, 2.0, 3.0, 4.0],
                              [5.0, 6.0, 7.0, 8.0],
                              [9.0, 10.0, 11.0, 12.0],
                              [13.0, 14.0, 15.0, 16.0]]]], dtype=torch.float32)

# 应用转置卷积
output_tensor = conv_transpose(input_tensor)

# 输出张量的形状
print(f"Input shape: {input_tensor.shape}")
print(f"Output shape after ConvTranspose2d: {output_tensor.shape}")

输出:

Input shape: torch.Size([1, 1, 4, 4])

Output shape after ConvTranspose2d: torch.Size([1, 1, 8, 8])

深入理解原理:转置卷积(Transposed Convolution)-CSDN博客

视频讲解:

相关推荐
AI指北2 分钟前
每周AI看 | 亚马逊推出AI产品矩阵、网易云商客服Agent项目收录至《2025年中国数字服务产业发展白皮书》
人工智能·ai·ai agent·ai热点
skywalk816313 分钟前
GLM-edge-1.5B-chat 一个特别的cpu可以推理的小型llm模型
人工智能·ollama·llama.cpp
TsingtaoAI15 分钟前
TsingtaoAI荣膺2025澳门首届DSA国际创新创业大赛奖项,RISC-V AI机器人引领行业新突破
人工智能·机器人·risc-v
CClaris16 分钟前
手撕 LSTM:用 NumPy 从零实现 LSTM 前向传播
人工智能·numpy·lstm
夜幕龙27 分钟前
宇树 G1 部署(十一)——遥操作脚本升级 teleop_hand_and_arm_update.py
人工智能·机器人·具身智能
币之互联万物28 分钟前
聚焦新质生产力 科技与金融深度融合赋能创新
人工智能·科技·金融
喜乐boy36 分钟前
CV系列——Conda + PyTorch + CUDA + cuDNN + Python 环境无脑安装速查笔记[2025.12]
pytorch·python·conda·cuda·cv
viperrrrrrrrrr738 分钟前
AI音色克隆
人工智能·深度学习·语音识别
阿杰学AI41 分钟前
AI核心知识35——大语言模型之Generative AI(简洁且通俗易懂版)
人工智能·ai·语言模型·chatgpt·aigc·生成式ai·generative ai
IT_陈寒42 分钟前
Redis 性能骤降50%?这5个隐藏配置陷阱你可能从未注意过
前端·人工智能·后端