PyTorch3D 可视化

PyTorch3D是非常好用的3D工具库。但是PyTorch3D对于可用于debug(例如调整cameras参数)的可视化工具并没有进行系统的介绍。这篇文章主要是想介绍我觉得非常使用的PyTorch3D可视化工具。

1. 新建一个Mesh

从hugging face上下载一个glb文件,例如 0025c5e2333949feb1db259d4ff08dbe。用如下代码可以读取并渲染。

python 复制代码
from pytorch3d.io import IO
from pytorch3d.io.experimental_gltf_io import MeshGlbFormat
from pytorch3d.renderer import RasterizationSettings, MeshRasterizer, PerspectiveCameras, look_at_view_transform, PointLights, MeshRenderer, SoftPhongShader
import matplotlib.pyplot as plt

'''
https://huggingface.co/datasets/allenai/objaverse/blob/main/glbs/000-000/0025c5e2333949feb1db259d4ff08dbe.glb
'''

device = "cuda"
image_size = (512, 512)
glb_path = "0025c5e2333949feb1db259d4ff08dbe.glb"

io = IO()
io.register_meshes_format(MeshGlbFormat())
with open(glb_path, "rb") as f:
    mesh = io.load_mesh(f, include_textures=True).to(device)

# Select the viewpoint using spherical angles  
distance = 3   # distance from camera to the object
elevation = 0.0   # angle of elevation in degrees
azimuth = 0.0  # No rotation so the camera is positioned on the +Z axis. 

# Get the position of the camera based on the spherical angles
R, T = look_at_view_transform(distance, elevation, azimuth, device=device)
cameras = PerspectiveCameras(device=device, R=R, T=T, image_size=(image_size, ), in_ndc=False)

cameras.to(device)
raster_settings = RasterizationSettings(
    image_size=image_size, 
    blur_radius=0.0, 
    faces_per_pixel=1, 
)
lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])
renderer = MeshRenderer(
    rasterizer=MeshRasterizer(
        cameras=cameras, 
        raster_settings=raster_settings
    ),
    shader=SoftPhongShader(
        device=device, 
        cameras=cameras,
        lights=lights
    )
)

images = renderer(mesh)
plt.imshow(images[0, ..., :3].cpu())
plt.axis("off")

我们会发现渲染得到的图片是空白的。那么接下来我们可以从利用PyTorch3D可视化工具查看是什么原因导致的。

2. 可视化 Texture

python 复制代码
plt.figure(figsize=(7,7))
texture_image=mesh.textures.maps_padded()
plt.imshow(texture_image.squeeze().cpu().numpy())
plt.axis("off")

3. 可视化 cameras 和 meshes

python 复制代码
from pytorch3d.vis.plotly_vis import plot_batch_individually

plot_batch_individually([mesh, cameras])

4. 渲染出来空白图像的原因

相机参数不对,可以看到3. 相机视野中压根没出现meshes。

相关推荐
想你依然心痛1 小时前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术
Learn Beyond Limits1 小时前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
shmexon1 小时前
上海兆越亮相无锡新能源盛会,以硬核通信科技赋能“能碳未来”
网络·人工智能
ziwu1 小时前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
北京耐用通信2 小时前
告别“牵一发而动全身”:耐达讯自动化Profibus PA分线器为石化流量计网络构筑安全屏障
人工智能·网络协议·安全·自动化·信息与通信
ziwu2 小时前
海洋生物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
luoganttcc2 小时前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶
向阳逐梦2 小时前
DC-DC Buck 电路(降压转换器)全面解析
人工智能·算法
xcLeigh2 小时前
AI的提示词专栏:“Prompt Chaining”把多个 Prompt 串联成工作流
人工智能·ai·prompt·提示词·工作流
是店小二呀3 小时前
AI模型练好了却传不出去?这两个工具帮你破局
人工智能