PyTorch3D 可视化

PyTorch3D是非常好用的3D工具库。但是PyTorch3D对于可用于debug(例如调整cameras参数)的可视化工具并没有进行系统的介绍。这篇文章主要是想介绍我觉得非常使用的PyTorch3D可视化工具。

1. 新建一个Mesh

从hugging face上下载一个glb文件,例如 0025c5e2333949feb1db259d4ff08dbe。用如下代码可以读取并渲染。

python 复制代码
from pytorch3d.io import IO
from pytorch3d.io.experimental_gltf_io import MeshGlbFormat
from pytorch3d.renderer import RasterizationSettings, MeshRasterizer, PerspectiveCameras, look_at_view_transform, PointLights, MeshRenderer, SoftPhongShader
import matplotlib.pyplot as plt

'''
https://huggingface.co/datasets/allenai/objaverse/blob/main/glbs/000-000/0025c5e2333949feb1db259d4ff08dbe.glb
'''

device = "cuda"
image_size = (512, 512)
glb_path = "0025c5e2333949feb1db259d4ff08dbe.glb"

io = IO()
io.register_meshes_format(MeshGlbFormat())
with open(glb_path, "rb") as f:
    mesh = io.load_mesh(f, include_textures=True).to(device)

# Select the viewpoint using spherical angles  
distance = 3   # distance from camera to the object
elevation = 0.0   # angle of elevation in degrees
azimuth = 0.0  # No rotation so the camera is positioned on the +Z axis. 

# Get the position of the camera based on the spherical angles
R, T = look_at_view_transform(distance, elevation, azimuth, device=device)
cameras = PerspectiveCameras(device=device, R=R, T=T, image_size=(image_size, ), in_ndc=False)

cameras.to(device)
raster_settings = RasterizationSettings(
    image_size=image_size, 
    blur_radius=0.0, 
    faces_per_pixel=1, 
)
lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])
renderer = MeshRenderer(
    rasterizer=MeshRasterizer(
        cameras=cameras, 
        raster_settings=raster_settings
    ),
    shader=SoftPhongShader(
        device=device, 
        cameras=cameras,
        lights=lights
    )
)

images = renderer(mesh)
plt.imshow(images[0, ..., :3].cpu())
plt.axis("off")

我们会发现渲染得到的图片是空白的。那么接下来我们可以从利用PyTorch3D可视化工具查看是什么原因导致的。

2. 可视化 Texture

python 复制代码
plt.figure(figsize=(7,7))
texture_image=mesh.textures.maps_padded()
plt.imshow(texture_image.squeeze().cpu().numpy())
plt.axis("off")

3. 可视化 cameras 和 meshes

python 复制代码
from pytorch3d.vis.plotly_vis import plot_batch_individually

plot_batch_individually([mesh, cameras])

4. 渲染出来空白图像的原因

相机参数不对,可以看到3. 相机视野中压根没出现meshes。

相关推荐
黎燃6 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊8 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠8 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶11 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云11 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术11 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新12 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心12 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算12 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位12 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程