1.原理参考
2.初级模式
cpp
#include <iostream>
class UF {
public:
// 记录连通分量
/* 构造函数,n 为图的节点总数 */
UF(int n) {
count = n;
// int arr[n];
parent_arr = new int[n];
for(int i=0; i<n; i++)
{
parent_arr[i] = i;
}
};
/* 其他函数 */
~UF()
{
delete[] parent_arr;
}
void union_func(int p, int q);
int find(int x);
int getCount();
bool connect(int p, int q);
private:
int count;
// 节点 x 的节点是 parent[x]
// int[] parent;
int* parent_arr;
};
void UF::union_func(int p, int q)
{
int rootP = find(p);
int rootQ = find(q);
if(rootQ == rootP)
return;
parent_arr[rootQ] = rootP;
count--;
}
int UF::find(int x)
{
while (parent_arr[x] != x)
{
x = parent_arr[x];
}
return x;
}
int UF::getCount()
{
return count;
}
bool UF::connect(int p, int q)
{
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
}
int main()
{
UF union_find(7);
union_find.union_func(0, 1);
union_find.union_func(0, 2);
union_find.union_func(0, 3);
union_find.union_func(2, 4);
union_find.union_func(2, 5);
union_find.union_func(3, 6);
std::cout << union_find.getCount() << std::endl;
return 0;
}
- 进阶模式
3.1 平衡性优化
3.2 路径压缩
cpp
#include <iostream>
class UF {
public:
// 记录连通分量
/* 构造函数,n 为图的节点总数 */
UF(int n) {
count = n;
// int arr[n];
parent_arr = new int[n];
size_arr = new int[n];
for(int i=0; i<n; i++)
{
parent_arr[i] = i;
size_arr[i] = i;
}
};
/* 其他函数 */
~UF()
{
delete[] parent_arr;
}
void union_func(int p, int q);
int find(int x);
int getCount();
bool connect(int p, int q);
private:
int count;
int* parent_arr;
int* size_arr;
};
void UF::union_func(int p, int q)
{
int rootP = find(p);
int rootQ = find(q);
// 小树接到大树下面,较平衡
if (size_arr[rootP] > size_arr[rootQ]) {
parent_arr[rootQ] = rootP;
size_arr[rootP] += size_arr[rootQ];
} else {
parent_arr[rootP] = rootQ;
size_arr[rootQ] += size_arr[rootP];
}
count--;
}
int UF::find(int x)
{
while (parent_arr[x] != x)
{
// 进行路径压缩
parent_arr[x] = parent_arr[parent_arr[x]];
x = parent_arr[x];
}
return x;
}
int UF::getCount()
{
return count;
}
bool UF::connect(int p, int q)
{
int rootP = find(p);
int rootQ = find(q);
return rootP == rootQ;
}
int main()
{
UF union_find(7);
union_find.union_func(0, 1);
union_find.union_func(0, 2);
union_find.union_func(0, 3);
union_find.union_func(2, 4);
union_find.union_func(2, 5);
union_find.union_func(3, 6);
std::cout << union_find.getCount() << std::endl;
return 0;
}