3D 生成重建032-Find3D去找到它身上的每一份碎片吧

3D 生成重建032-Find3D去找到它身上的每一份碎片吧


文章目录

    • [0 论文工作](#0 论文工作)
    • [1 论文方法](#1 论文方法)
    • [2 实验结果](#2 实验结果)

0 论文工作

该论文研究三维开放世界部件分割问题:基于任何文本查询分割任何物体中的任何部件。以往的方法在物体类别或部件词汇方面存在局限性。最近人工智能的进步在二维图像中展现了有效的开放世界识别能力。受此启发,提出了一种开放世界直接预测模型,用于三维部件分割,可对任何物体进行零样本应用。该方法叫FIND3D,在一个大型互联网三维资产数据集上训练了一个通用类别点嵌入模型,无需任何人工标注。它结合了一个由基础模型驱动的用于数据标注的数据引擎和一种对比训练方法。

实际上这个当法的策略跟我们前面提到的将SAM知识蒸馏到3D空间的工作相近,主要体现在目标上的不同。不同的是该方法借助这种标注结果去训练一个3d分割大模型
paper
github

相关论文
langsplat
LERF
gaussian grouping
feature 3DGS
SA3D

1 论文方法


FIND3D旨在解决现有三维部件分割方法在物体类别和部件词汇上的局限性问题。它通过以下三个关键步骤实现目标:
数据引擎: 利用2D基础模型(SAM和Gemini)自动标注来自互联网的大规模三维资产,生成包含150万个部件标注的数据集。这个数据引擎无需人工标注,极大提升了数据获取效率。
模型训练 : 基于标注数据,训练一个基于Transformer的点云模型。采用对比学习方法,解决部件层次结构和歧义问题,提高模型的泛化能力。
零样本预测 : FIND3D能够对任何物体和任意文本查询进行零样本预测,直接输出部件分割结果。

自动数据标注: FIND3D的数据引擎实现了对三维数据的自动标注,避免了耗时的人工标注过程,极大地降低了数据获取成本,并使得训练大规模模型成为可能。

基于Transformer的点云模型和对比学习: 使用基于Transformer的架构处理点云数据,能够有效地捕捉点与点之间的长程依赖关系。同时,采用对比学习方法,有效地解决了部件层次结构和歧义问题,提高了模型的鲁棒性和准确性。

2 实验结果

相关推荐
智慧地球(AI·Earth)12 分钟前
GPT-5.1发布!你的AI更暖更智能!
人工智能·gpt·神经网络·aigc·agi
麦麦麦造20 分钟前
全网都在推 comet 浏览器,但我劝你谨慎!
aigc
宁渡AI大模型20 分钟前
从生成内容角度介绍开源AI大模型
人工智能·ai·大模型·qwen
xier_ran1 小时前
深度学习:Mini-Batch 梯度下降(Mini-Batch Gradient Descent)
人工智能·深度学习·batch
开发加微信:hedian1161 小时前
短剧小程序开发全攻略:技术选型与实现思路
微信·小程序·架构·aigc·交互
Microvision维视智造1 小时前
变速箱阀芯上料易错漏?通用 2D 视觉方案高效破局,成汽车制造检测优选!
人工智能
AAA小肥杨1 小时前
探索K8s与AI的结合:PyTorch训练任务在k8s上调度实践
人工智能·pytorch·docker·ai·云原生·kubernetes
飞哥数智坊1 小时前
TRAE Friends 落地济南!首场线下活动圆满结束
人工智能·trae·solo
m0_527653901 小时前
NVIDIA Orin NX使用Jetpack安装CUDA、cuDNN、TensorRT、VPI时的error及解决方法
linux·人工智能·jetpack·nvidia orin nx
小溪彼岸1 小时前
Codex CLI初体验
aigc