使用Opencv对监控相机进行内参标定记录

使用Opencv对监控相机进行标定记录

一、前言

由于相机存在径向畸变和切向畸变,导致相机中一些图像细节产生畸变。需要进行内参矫正。

二、C++代码

新建三个文件,main.cpp,Calibration.cpp和Calibration.h

1.代码main.cpp
cpp 复制代码
#include <string>
#include <fstream>
#include <iostream>
#include "Calibration.h"

//标定需要的变量
int imgNum = 10;
vector<cv::Mat> patternImgList;
string calibResultPath = "D:/work/C++Code/Calibration/Calibration/Calibration/CalibrationImgs/";
Size boardSize = Size(10, 7);  //标定板的内角点数量,不是格子数量boardSize(columns, rows); // columns 和 rows 分别代表棋盘的列数和行数
Size squreSize = Size(30, 30);  //棋盘格尺寸square_size(square_width, square_height); // 每个棋格的实际宽度和高度




int main(int argc, char** argv)
{
	cout << "Start run calibration!" << endl;
	//读入图像
	for (int i = 1; i <= imgNum; i++) {
		string imgPath = calibResultPath + to_string(i) + ".jpg";
		cv::Mat img = cv::imread(imgPath);
		if (img.empty()) {
			cout << "Failed to load image: " << imgPath << endl;
			continue;
		}
		patternImgList.push_back(img);
		cout << "Loaded image: " << imgPath << endl;
	}
	//初始化标定
	CCalibration calibration(calibResultPath, boardSize, squreSize);
	calibration.run(patternImgList, imgNum);

}

在calibResultPath中写入图像路径,图像按照1、2、3...的Jpg格式放入文件夹中。

2.代码Calibration
cpp 复制代码
#include "Calibration.h"
#define DEBUG = 1;

bool CCalibration::writeParams()
{
	camK.convertTo(camK, CV_32FC1);
	camDiscoeff.convertTo(camDiscoeff, CV_32FC1);
	ofstream out;
	out.open(calibResultPath + "calibResult.txt", ios::out);
	out << camK.at<float>(0, 0) << endl;
	out << camK.at<float>(1, 1) << endl;
	out << camK.at<float>(0, 2) << endl;
	out << camK.at<float>(1, 2) << endl;
#ifdef CV
	out << camDiscoeff.at<float>(0, 0) << endl;
	out << camDiscoeff.at<float>(0, 1) << endl;
	out << camDiscoeff.at<float>(0, 2) << endl;
	out << camDiscoeff.at<float>(0, 3) << endl;
	out << camDiscoeff.at<float>(0, 4) << endl;
#elif defined FISHEYE
	out << camDiscoeff.at<float>(0, 0) << endl;
	out << camDiscoeff.at<float>(0, 1) << endl;
	out << camDiscoeff.at<float>(0, 2) << endl;
	out << camDiscoeff.at<float>(0, 3) << endl;
#endif
	out.close();
	return true;
}

bool CCalibration::readPatternImg(vector<Mat> ImgList, int imgNum)
{

	patternImgList = ImgList;
	this->imgNum = imgNum;
	imgHeight = patternImgList[0].rows;
	imgWidth = patternImgList[0].cols;

	return true;
}
//通过计算三个相邻角点构成的两个向量之间的夹角判断角点连接性
bool CCalibration::testCorners(vector<cv::Point2f>& corners, int patternWidth, int patternHeight)
{
	if (corners.size() != patternWidth * patternHeight)
	{
		return false;
	}
	double dx1, dx2, dy1, dy2;
	double cosVal;
	for (int i = 0; i < patternHeight; ++i)
	{
		for (int j = 0; j < patternWidth - 2; ++j)
		{
			dx1 = corners[i * patternWidth + j + 1].x - corners[i * patternWidth + j].x;
			dy1 = corners[i * patternWidth + j + 1].y - corners[i * patternWidth + j].y;
			dx2 = corners[i * patternWidth + j + 2].x - corners[i * patternWidth + j + 1].x;
			dy2 = corners[i * patternWidth + j + 2].y - corners[i * patternWidth + j + 1].y;
			cosVal = (dx1 * dx2 + dy1 * dy2) / sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2));
			if (fabs(cosVal) < 0.993)
			{
				return false;
			}
		}
	}
	for (int i = 0; i < patternHeight - 2; ++i)
	{
		for (int j = 0; j < patternWidth; ++j)
		{
			dx1 = corners[(i + 1) * patternWidth + j].x - corners[i * patternWidth + j].x;
			dy1 = corners[(i + 1) * patternWidth + j].y - corners[i * patternWidth + j].y;
			dx2 = corners[(i + 2) * patternWidth + j].x - corners[(i + 1) * patternWidth + j].x;
			dy2 = corners[(i + 2) * patternWidth + j].y - corners[(i + 1) * patternWidth + j].y;
			cosVal = (dx1 * dx2 + dy1 * dy2) / sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2));
			if (fabs(cosVal) < 0.993)
			{
				return false;
			}
		}
	}
	return true;
}

//初始化角点的三维坐标
void CCalibration::init3DPoints(cv::Size boardSize, cv::Size squareSize, vector<cv::Point3f>& singlePatternPoint)
{
	for (int i = 0; i < boardSize.height; i++)
	{
		for (int j = 0; j < boardSize.width; j++)
		{
			cv::Point3f tempPoint;//单个角点的三维坐标
			tempPoint.x = float(i * squareSize.width);
			tempPoint.y = float(j * squareSize.height);
			tempPoint.z = 0;
			singlePatternPoint.push_back(tempPoint);
		}
	}
}

void CCalibration::calibProcess()
{
	//***************摄像机标定****************//
	double time0 = (double)getTickCount();
	vector<Point2f> corners;//存储一幅棋盘图中的所有角点二维坐标
	vector<vector<Point2f>> cornersSeq;//存储所有棋盘图角点的二维坐标
	vector<Mat> image_Seq;//存储所有棋盘图
	int successImgNum = 0;
	int count = 0;
	cout << "********开始提取角点!********" << endl;
	Mat image, scaleImg, grayImg;
	for (int i = 0; i < imgNum; i++)
	{
		cout << "Image#" << i << "......." << endl;
		image = patternImgList[i].clone();

		/**********************提取角点*************************/
		bool patternfound = findChessboardCorners(image, boardSize,
			corners, CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + CALIB_CB_FAST_CHECK);
		if (!patternfound)
		{
			cout << "Can not find chess board corners!\n" << endl;
			continue;
		}
		else
		{

			/************************亚像素精确化******************************/
			cvtColor(image, grayImg, cv::COLOR_BGR2GRAY);
			cornerSubPix(grayImg, corners, Size(11, 11), Size(-1, -1), TermCriteria(cv::TermCriteria::MAX_ITER + cv::TermCriteria::Type::EPS, 30, 0.1));
			bool good = testCorners(corners, boardSize.width, boardSize.height);
			if (false == good)	continue;
			/************************绘制检测到的角点并显示******************************/
			Mat cornerImg = image.clone();
			//cvtColor(cornerImg, cornerImg, COLOR_GRAY2BGR);
			for (int j = 0; j < corners.size(); j++)
			{
				circle(cornerImg, corners[j], 20, Scalar(0, 0, 255), 2, 8, 0);
			}
			namedWindow("CirclePattern", 0);
			imshow("CirclePattern", cornerImg);
			waitKey(1);
			count += (int)corners.size();//所有棋盘图中的角点个数
			successImgNum++;//成功提取角点的棋盘图个数
			cornersSeq.push_back(corners);
			image_Seq.push_back(image);
		}
	}
	cout << "*******角点提取完成!******" << endl;

	/**************************摄像机标定******************************/
	vector<vector<Point3f>> object_points;//所有棋盘图像的角点三维坐标
	vector<int> pointCounts;
	//初始化单幅靶标图片的三维点
	init3DPoints(boardSize, squre_size, singlePatternPoints);
	//初始化标定板上的三维坐标
	for (int n = 0; n < successImgNum; n++)
	{
		object_points.push_back(singlePatternPoints);
		pointCounts.push_back(boardSize.width * boardSize.height);
	}

	/***开始标定***/
	cout << "*****开始标定!******" << endl;
	Size imgSize = Size(imgWidth, imgHeight);
	vector<Vec3d> rotation;//旋转向量
	vector<Vec3d> translation;//平移向量
#ifdef CV
	int flags = 0;
	cv::calibrateCamera(object_points, cornersSeq, imgSize, camK, camDiscoeff,
		rotation, translation, flags);
#elif defined FISHEYE
	int flags = 0;
	cv::fisheye::calibrate(object_points, cornersSeq, imgSize, camK,
		camDiscoeff, rotation, translation, flags, cv::TermCriteria(3, 20, 1e-6));
#endif
	cout << "*****标定完成!*****" << endl;
	double time1 = getTickCount();
	cout << "Calibration time :" << (time1 - time0) / getTickFrequency() << "s" << endl;
	//评价
	vector<int> outLierIndex;
	evaluateCalibrationResult(object_points, cornersSeq, pointCounts, rotation, translation,
		camK, camDiscoeff, successImgNum, outLierIndex, errThresh);
	//删除误差大的角点图
	vector<vector<cv::Point2f>> newCornersSeq;
	successImgNum = 0;
	for (int i = 0; i < cornersSeq.size(); i++)
	{
		if (outLierIndex[i] == 0)
		{
			newCornersSeq.push_back(cornersSeq[i]);
			successImgNum++;
		}
	}
	vector<vector<cv::Point3f>> newObjectPoints;
	for (int n = 0; n < successImgNum; n++)
	{
		newObjectPoints.push_back(singlePatternPoints);
	}
	//重新标定
#ifdef CV
	cv::calibrateCamera(object_points, cornersSeq, imgSize, camK, camDiscoeff,
		rotation, translation, flags);
#elif defined FISHEYE
	cv::fisheye::calibrate(newObjectPoints, newCornersSeq, imgSize, camK, camDiscoeff,
		rotation, translation, flags, cv::TermCriteria(3, 20, 1e-6));
#endif
	//重新计算重投影误差
	outLierIndex.clear();
	evaluateCalibrationResult(object_points, cornersSeq, pointCounts, rotation, translation,
		camK, camDiscoeff, successImgNum, outLierIndex, errThresh);
#ifdef DEBUG
	//通过畸变校正效果查看摄像机标定效果
	cv::Mat R = cv::Mat::eye(3, 3, CV_32FC1);
	cv::Mat mapx, mapy, newCamK, undistortImg, showImg;
	cv::initUndistortRectifyMap(camK, camDiscoeff, R, camK, imgSize, CV_32FC1, mapx, mapy);
	cv::remap(image_Seq[0], undistortImg, mapx, mapy, INTER_LINEAR);
	cv::resize(undistortImg, showImg, cv::Size(), 0.25, 0.25, INTER_LINEAR);
	string winName = "undistortImg";
	cv::namedWindow(winName, 1);
	cv::imshow(winName, showImg);
	cv::waitKey(0);
#endif
}

//估计重投影误差,并排除误差大于设定阈值的靶标图片
int CCalibration::evaluateCalibrationResult(vector<vector<cv::Point3f>> objectPoints, vector<vector<cv::Point2f>> cornerSquare, vector<int> pointCnts, vector<cv::Vec3d> _rvec,
	vector<cv::Vec3d> _tvec, cv::Mat _K, cv::Mat _D, int count, vector<int>& outLierIndex, int errThresh)
{
	string evaluatPath = calibResultPath + "evaluateCalibrationResult.txt";
	ofstream fout(evaluatPath);

	double total_err = 0.0;//所有图像的平均误差和
	double err = 0.0;//单幅图像的平均误差
	vector<cv::Point2f> proImgPoints;
	for (int i = 0; i < count; i++)
	{
		float maxValue = -1;
		vector<cv::Point3f> tempPointSet = objectPoints[i];
#ifdef CV
		cv::projectPoints(tempPointSet, _rvec[i], _tvec[i], _K, _D, proImgPoints);
#elif defined FISHEYE
		cv::fisheye::projectPoints(tempPointSet, proImgPoints, _rvec[i], _tvec[i], _K, _D);
#endif

		vector<cv::Point2f> tempImgPoint = cornerSquare[i];
		cv::Mat tempImgPointMat = cv::Mat(1, tempImgPoint.size(), CV_32FC2);
		cv::Mat proImgPointsMat = cv::Mat(1, proImgPoints.size(), CV_32FC2);
		for (int j = 0; j != tempImgPoint.size(); j++)
		{
			proImgPointsMat.at<cv::Vec2f>(0, j) = cv::Vec2f(proImgPoints[j].x, proImgPoints[j].y);
			tempImgPointMat.at<cv::Vec2f>(0, j) = cv::Vec2f(tempImgPoint[j].x, tempImgPoint[j].y);
			float dx = proImgPoints[j].x - tempImgPoint[j].x;
			float dy = proImgPoints[j].y - tempImgPoint[j].y;
			float diff = sqrt(dx * dx + dy * dy);
			if (diff > maxValue)
			{
				maxValue = diff;
			}
		}
		fout << "第" << i << "幅图像的最大重投影误差:" << maxValue << "像素" << endl;

		//找出重投影误差大于errThresh的图
		if (maxValue > errThresh)
		{
			outLierIndex.push_back(-1);
		}
		else
		{
			outLierIndex.push_back(0);
		}
	}
	fout.close();
	return 0;
}

void CCalibration::run(vector<Mat> ImgList, int imgNum)
{
	bool readSuccess = readPatternImg(ImgList, imgNum);
	if (!readSuccess)
	{
		cout << "Fail!  No Pattern Imgs !" << endl;
		getchar();
	}
	calibProcess();
	writeParams();


}
3.代码Calibration.h
cpp 复制代码
#pragma once
//#include "opencv2\opencv.hpp"
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp> 
#include <string>
#include <fstream>
#include <iostream>

using namespace std;
using namespace cv;
#define CALIBRATION_IMG_NUM 10  //标定需要获取的图像帧数
#define CV //普通相机
//#define FISHEYE  //鱼眼相机

class CCalibration
{
public:
    CCalibration(string CalibResultPath, Size boardSize, Size squreSize)
    {
        //this->patternImgPath = patternImgPath;
        this->calibResultPath = CalibResultPath;
        this->boardSize = boardSize;
        this->squre_size = squreSize;
    }
    ~CCalibration() {}

private:
    vector<cv::Point3f> singlePatternPoints;
    vector<Mat> patternImgList;
    int imgHeight;
    int imgWidth;
    int imgNum;
    float scale = 0.25;
    float errThresh = 3000;
    string patternImgPath;
    string calibResultPath;
    Size boardSize;
    Size squre_size;//棋盘格尺寸
    Mat camK;
    Mat camDiscoeff;

private:
    int evaluateCalibrationResult(vector<vector<cv::Point3f>> objectPoints, vector<vector<cv::Point2f>> cornerSquare, vector<int> pointCnts, vector<cv::Vec3d> _rvec,
        vector<cv::Vec3d> _tvec, cv::Mat _K, cv::Mat _D, int count, vector<int>& outLierIndex, int errThresh);
    bool testCorners(vector<cv::Point2f>& corners, int patternWidth, int patternHeight);
    void init3DPoints(cv::Size boardSize, cv::Size squareSize, vector<cv::Point3f>& singlePatternPoint);
public:
    bool writeParams();
    bool readPatternImg(vector<Mat> ImgList, int imgNum);
    void calibProcess();
    void run(vector<Mat> ImgList, int imgNum);
};

三、结果

会在对应文件夹下生成calibResult.txt和evaluateCalibrationResult.txt文件

其中calibration.txt文件内容如下

evaluateCalibrationResult.txt文件内容如下

相关推荐
冰万森5 小时前
【图像处理】——掩码
python·opencv·计算机视觉
Antonio9156 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉
大哥喝阔落10 小时前
图片专栏——曝光度调整相关
人工智能·python·opencv
鸭鸭鸭进京赶烤11 小时前
OpenAI秘密重塑机器人军团: 实体AGI的崛起!
人工智能·opencv·机器学习·ai·机器人·agi·机器翻译引擎
山川而川-R15 小时前
ubuntu电脑调用摄像头拍摄照片
人工智能·opencv·计算机视觉
Antonio9151 天前
【opencv】第9章 直方图与匹配
人工智能·opencv·计算机视觉
油泼辣子多加1 天前
【计算机视觉】人脸识别
人工智能·opencv·计算机视觉
湫ccc1 天前
《Opencv》图像的透视变换--处理发票
人工智能·opencv·计算机视觉
游客5201 天前
图像处理|顶帽操作
图像处理·人工智能·python·opencv
jndingxin1 天前
OpenCV相机标定与3D重建(62)根据两个投影矩阵和对应的图像点来计算3D空间中点的坐标函数triangulatePoints()的使用
opencv·3d