感知机及python实现

感知机(Perceptron)是神经网络的基本构件之一,最初由Frank Rosenblatt在1957年提出。感知机是一种二分类的线性分类器,通过一个简单的线性函数将输入数据分类到两种类别之一。

基本原理

感知机的工作原理如下:

  1. 输入:接受多个输入特征,每个特征有一个权重。

  2. 加权和:计算输入特征与对应权重的加权和。

  3. 激活函数:将加权和通过一个激活函数(通常是阶跃函数或符号函数)转换为输出。

  4. 更新权重:根据预测结果与实际结果之间的差异,调整权重,直到模型能够正确分类。

感知机的输出公式如下:如果 w⋅x+b≥0,y=1,如果 w⋅x+b<0,y=0

其中,w是权重向量,x是输入向量,b 是偏置项。

如何设计感知机

设计一个感知机模型包括以下步骤:

  1. 初始化权重和偏置

    • 将权重向量 w初始化为零或小的随机值。

    • 偏置项 b 初始化为1。

  2. 定义激活函数

    • 使用阶跃函数或符号函数作为激活函数。
  3. 训练模型

    • 输入训练数据集,包含输入特征和对应的标签。

    • 迭代更新权重和偏置,直到收敛或达到预设的迭代次数。

    • 使用如下公式更新权重和偏置:

其中,η为学习率。

示例

python 复制代码
import numpy as np

# 感知机类
class Perceptron:
    def __init__(self, learning_rate, n_iterations):
        self.lr = learning_rate
        self.n_iterations = n_iterations
        self.weights = None
        self.bias = None

    # 训练模型
    def fit(self, X, y):
        n_samples, n_features = X.shape
        
        # 初始化权重和偏置
        self.weights = np.zeros(n_features)
        self.weights_bias = 0
        self.bias = 1
        
        y_ = np.array([1 if i > 0 else 0 for i in y])
        
        # 迭代
        for _ in range(self.n_iterations):
            for idx, x_i in enumerate(X):
                linear_output = np.dot(x_i, self.weights) + self.bias * self.weights_bias
                y_pred = 1 if linear_output >= 0 else 0
                
                # 如果预测错误,则更新权重和偏置
                if y_pred != y_[idx]:
                    self.weights +=  self.lr * (y_[idx] - y_pred) * x_i
                    self.weights_bias +=  self.lr * (y_[idx] - y_pred)
                    
                # 打印权重更新结果
                print(self.weights, self.weights_bias)    
                    
    # 预测
    def predict(self, X):
        linear_output = np.dot(X, self.weights) + self.bias
        y_pred = [1 if i >= 0 else 0 for i in linear_output]
        return np.array(y_pred)

# 示例数据,X为数据点集,y为其分类集
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([-1, -1, -1, 1])

# 创建感知机实例
p = Perceptron(learning_rate = 1, n_iterations=10)

# 训练模型
p.fit(X, y)

# 待预测数据
z = np.array([[3,9], [9,3], [3,-9], [-3,9]])

# 预测
print(p.predict(z))
相关推荐
AI_567812 分钟前
Postman接口测试极速入门指南
开发语言·人工智能·学习·测试工具·lua
我的golang之路果然有问题13 分钟前
开源绘画大模型简单了解
人工智能·ai作画·stable diffusion·人工智能作画
极智视界24 分钟前
目标检测数据集 - 自动驾驶场景车辆方向检测数据集下载
人工智能·目标检测·自动驾驶
田井中律.27 分钟前
知识图谱(四)之LSTM+CRF
人工智能·机器学习
Hcoco_me32 分钟前
大模型面试题74:在使用GRPO训练LLM时,训练数据有什么要求?
人工智能·深度学习·算法·机器学习·chatgpt·机器人
筱昕~呀34 分钟前
基于深度生成对抗网络的智能实时美妆设计
人工智能·python·生成对抗网络·mediapipe·beautygan
qunaa010140 分钟前
钻井作业场景下设备与产品识别与检测:基于YOLO11-SRFD的目标检测系统实现与应用
人工智能·目标检测·计算机视觉
AI前言观察者41 分钟前
2026年工作简历怎么写?
人工智能·经验分享·面试·职场和发展·求职招聘
Guheyunyi43 分钟前
智慧消防管理平台的关键技术突破与创新
大数据·运维·人工智能·安全·音视频
PEARL的AI指南1 小时前
智启AI零售营销实践:案例复盘与效果分享
人工智能·零售