数学建模中随机森林分类

随机森林是一种集成学习方法,属于 决策树 的扩展。它通过构建多棵决策树并结合其结果进行预测,能够显著提升模型的准确性和鲁棒性。随机森林特别适用于分类和回归任务,广泛应用于许多实际问题中,如金融欺诈检测、疾病预测、图像识别等。

以下是随机森林分类模型在数学建模中的建模过程,涵盖其基本原理、数学公式和建模步骤。

复制代码
% 1. 加载数据集
% 使用MATLAB自带的鸢尾花数据集作为示例
load fisheriris; % 数据集包含iris数据,特征存储在meas中,类别标签存储在species中

% 2. 数据准备
X = meas; % 特征矩阵 (150 x 4)
y = species; % 类别标签 (150 x 1)

% 将数据分成训练集和测试集
cv = cvpartition(length(y), 'HoldOut', 0.3); % 70%用于训练,30%用于测试
X_train = X(training(cv), :); % 训练集特征
y_train = y(training(cv)); % 训练集标签
X_test = X(test(cv), :); % 测试集特征
y_test = y(test(cv)); % 测试集标签

% 3. 训练随机森林分类器
num_trees = 100; % 随机森林中树的数量
rf_model = TreeBagger(num_trees, X_train, y_train, 'OOBPrediction', 'On', 'Method', 'classification');

% 4. 模型评估
% 预测测试集
y_pred = predict(rf_model, X_test);
y_pred = categorical(y_pred); % 转换为类别数据

% 计算准确率
accuracy = sum(y_pred == y_test) / length(y_test);
fprintf('Test Accuracy: %.2f%%\n', accuracy * 100);

% 5. 特征重要性评估
% 获取特征重要性
feature_importance = rf_model.OOBPermutedPredictorDeltaError;
disp('Feature Importance:');
disp(feature_importance);

% 6. 绘制特征重要性条形图
figure;
bar(feature_importance);
title('Feature Importance');
xlabel('Features');
ylabel('Importance');
set(gca, 'XTickLabel', {'SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'});

% 7. 交叉验证错误
% 使用袋外数据计算错误率
figure;
oobError = oobError(rf_model);
plot(oobError);
title('Out-of-Bag Error');
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Error Rate');
相关推荐
SirLancelot11 分钟前
AI大模型-基本介绍(一)RAG、向量、向量数据库
数据库·人工智能·ai·向量·向量数据库·rag
跨境猫小妹12 分钟前
跨境电商深水区:价值增长新范式,重构出海增长逻辑
大数据·人工智能·重构·产品运营·跨境电商·防关联
imbackneverdie12 分钟前
AI工具如何重塑综述写作新体验
数据库·人工智能·考研·自然语言处理·aigc·论文·ai写作
zhaodiandiandian13 分钟前
大模型驱动AI产业化浪潮,全链条突破重塑经济生态
人工智能
这儿有一堆花16 分钟前
将 AI 深度集成到开发环境:Gemini CLI 实用指南
人工智能·ai·ai编程
zhaodiandiandian17 分钟前
从多模态到AI Agent,技术突破引领智能时代新变革
人工智能
l3538o6757321 分钟前
国产POE降压恒压芯片方案选型:48v-52v输入转5v-12v/1-3A电源芯片
人工智能·科技·单片机·嵌入式硬件·电脑·智能家居
迪菲赫尔曼28 分钟前
YAML2ModelGraph【v1.0】:一键生成 Ultralytics 模型结构图
人工智能·yolo·目标检测·yolov5·yolov8·yolo11·结构图
道199330 分钟前
树莓派vsRK3588 对比及无人车集成方案(RTK / 激光雷达 / 云卓 H16)
人工智能
会挠头但不秃30 分钟前
深度学习(5)循环神经网络
人工智能·rnn·深度学习