数学建模中随机森林分类

随机森林是一种集成学习方法,属于 决策树 的扩展。它通过构建多棵决策树并结合其结果进行预测,能够显著提升模型的准确性和鲁棒性。随机森林特别适用于分类和回归任务,广泛应用于许多实际问题中,如金融欺诈检测、疾病预测、图像识别等。

以下是随机森林分类模型在数学建模中的建模过程,涵盖其基本原理、数学公式和建模步骤。

复制代码
% 1. 加载数据集
% 使用MATLAB自带的鸢尾花数据集作为示例
load fisheriris; % 数据集包含iris数据,特征存储在meas中,类别标签存储在species中

% 2. 数据准备
X = meas; % 特征矩阵 (150 x 4)
y = species; % 类别标签 (150 x 1)

% 将数据分成训练集和测试集
cv = cvpartition(length(y), 'HoldOut', 0.3); % 70%用于训练,30%用于测试
X_train = X(training(cv), :); % 训练集特征
y_train = y(training(cv)); % 训练集标签
X_test = X(test(cv), :); % 测试集特征
y_test = y(test(cv)); % 测试集标签

% 3. 训练随机森林分类器
num_trees = 100; % 随机森林中树的数量
rf_model = TreeBagger(num_trees, X_train, y_train, 'OOBPrediction', 'On', 'Method', 'classification');

% 4. 模型评估
% 预测测试集
y_pred = predict(rf_model, X_test);
y_pred = categorical(y_pred); % 转换为类别数据

% 计算准确率
accuracy = sum(y_pred == y_test) / length(y_test);
fprintf('Test Accuracy: %.2f%%\n', accuracy * 100);

% 5. 特征重要性评估
% 获取特征重要性
feature_importance = rf_model.OOBPermutedPredictorDeltaError;
disp('Feature Importance:');
disp(feature_importance);

% 6. 绘制特征重要性条形图
figure;
bar(feature_importance);
title('Feature Importance');
xlabel('Features');
ylabel('Importance');
set(gca, 'XTickLabel', {'SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'});

% 7. 交叉验证错误
% 使用袋外数据计算错误率
figure;
oobError = oobError(rf_model);
plot(oobError);
title('Out-of-Bag Error');
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Error Rate');
相关推荐
乾元19 小时前
动态路由策略回归测试:把 CI/CD 思想带入网络路由(工程化 · Near-term)
运维·服务器·网络·人工智能·ci/cd·架构·智能路由器
AI视觉网奇19 小时前
live2d 全身数字人
人工智能·计算机视觉
HelloReader19 小时前
用 Spark Shell 做交互式数据分析从入门到自包含应用
人工智能
Hello娃的19 小时前
【神经网络】构成单元、网络结构、训练过程
深度学习·神经网络·机器学习
_codemonster19 小时前
AI大模型入门到实战系列(四)深入理解 Transformer 大语言模型
人工智能·语言模型·transformer
爱笑的眼睛1119 小时前
从零构建与深度优化:PyTorch训练循环的工程化实践
java·人工智能·python·ai
c#上位机19 小时前
halcon刚性变换(平移+旋转)——vector_angle_to_rigid
人工智能·计算机视觉·c#·上位机·halcon·机器视觉
liliangcsdn19 小时前
如何使用pytorch模拟Pearson loss训练模型
人工智能·pytorch·python
做cv的小昊20 小时前
VLM相关论文阅读:【LoRA】Low-rank Adaptation of Large Language Models
论文阅读·人工智能·深度学习·计算机视觉·语言模型·自然语言处理·transformer