数学建模中随机森林分类

随机森林是一种集成学习方法,属于 决策树 的扩展。它通过构建多棵决策树并结合其结果进行预测,能够显著提升模型的准确性和鲁棒性。随机森林特别适用于分类和回归任务,广泛应用于许多实际问题中,如金融欺诈检测、疾病预测、图像识别等。

以下是随机森林分类模型在数学建模中的建模过程,涵盖其基本原理、数学公式和建模步骤。

复制代码
% 1. 加载数据集
% 使用MATLAB自带的鸢尾花数据集作为示例
load fisheriris; % 数据集包含iris数据,特征存储在meas中,类别标签存储在species中

% 2. 数据准备
X = meas; % 特征矩阵 (150 x 4)
y = species; % 类别标签 (150 x 1)

% 将数据分成训练集和测试集
cv = cvpartition(length(y), 'HoldOut', 0.3); % 70%用于训练,30%用于测试
X_train = X(training(cv), :); % 训练集特征
y_train = y(training(cv)); % 训练集标签
X_test = X(test(cv), :); % 测试集特征
y_test = y(test(cv)); % 测试集标签

% 3. 训练随机森林分类器
num_trees = 100; % 随机森林中树的数量
rf_model = TreeBagger(num_trees, X_train, y_train, 'OOBPrediction', 'On', 'Method', 'classification');

% 4. 模型评估
% 预测测试集
y_pred = predict(rf_model, X_test);
y_pred = categorical(y_pred); % 转换为类别数据

% 计算准确率
accuracy = sum(y_pred == y_test) / length(y_test);
fprintf('Test Accuracy: %.2f%%\n', accuracy * 100);

% 5. 特征重要性评估
% 获取特征重要性
feature_importance = rf_model.OOBPermutedPredictorDeltaError;
disp('Feature Importance:');
disp(feature_importance);

% 6. 绘制特征重要性条形图
figure;
bar(feature_importance);
title('Feature Importance');
xlabel('Features');
ylabel('Importance');
set(gca, 'XTickLabel', {'SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'});

% 7. 交叉验证错误
% 使用袋外数据计算错误率
figure;
oobError = oobError(rf_model);
plot(oobError);
title('Out-of-Bag Error');
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Error Rate');
相关推荐
s153358 分钟前
11.RV1126-ROCKX项目
人工智能
是小菜呀!22 分钟前
深度学习环境配置指南:基于Anaconda与PyCharm的全流程操作
人工智能·深度学习·pycharm
2401_8769075226 分钟前
IEC 61347-1:2015 灯控制装置安全标准详解
大数据·数据结构·人工智能·算法·安全·学习方法
井云智能矩阵系统33 分钟前
AI数字人技术革新进行时:井云数字人如何重塑人机交互未来?
人工智能·数字人·ai数字人·声音克隆·数字人交互·数字人分身·克隆形象
giszz38 分钟前
【AI】智驾地图在不同自动驾驶等级中的作用演变
人工智能·机器学习·自动驾驶
kuankeTech41 分钟前
从“人找政策”到“政策找人”:智能退税ERP数字化重构外贸生态
大数据·人工智能·物联网·软件开发·erp
二进制的Liao1 小时前
【数据分析】什么是鲁棒性?
运维·论文阅读·算法·数学建模·性能优化·线性回归·负载均衡
西西弗Sisyphus1 小时前
Qwen2.5-VL - FFN(前馈神经网络)Feedforward Neural Network
人工智能·深度学习·神经网络·qwen
思通数科多模态大模型1 小时前
重构城市应急指挥布控策略 ——无人机智能视频监控的破局之道
人工智能·深度学习·安全·重构·数据挖掘·音视频·无人机
十三画者1 小时前
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
python·机器学习·数据挖掘·数据分析·r语言·数据可视化