LSTM (Long Short-Term Memory)

正如其名它是长时记忆和短时记忆相结合

RNN中将序列信息进行运用,但是也存在他的缺点就是随着时间序列的长度增加,产生梯度消失和梯度爆炸问题,因此长期记忆能力有限,所以引出LSTM。(但是对于较短的序列,RNN 可能能够较好地学习到其中的模式和关系。)

LSTM相当于给RNN模块增加了一个笔记本以达到长期记忆的效果

LSMT模块:

LSTM主要包含四个门(遗忘门输入门候选记忆输出门)来决定当前时刻的隐状态和记忆单元如何更新。对于每个时间步,LSTM会基于当前的输入和上一时刻的隐状态以及记忆单元来进行计算。

LSTM的一些核心公式:

遗忘门(Forget gate)决定上一时刻的记忆单元中有多少信息被遗忘:

输入门(Input gate)决定当前时刻输入的信息有多少被存储在记忆单元中:

候选记忆(Candidate memory)决定当前输入的候选记忆内容:

更新记忆单元(Update cell state)基于遗忘门和输入门来更新记忆单元:

输出门(Output gate)决定当前时刻的输出(隐状态):

计算隐状态(Output hidden state):

相关推荐
L_cl35 分钟前
【NLP 15、深度学习处理文本】
人工智能·深度学习
一位小说男主1 小时前
可解释性方法:从理论到实践的深度剖析(续上文)
人工智能·深度学习·机器学习
martian6651 小时前
深入详解神经网络基础知识——理解前馈神经网络( FNN)、卷积神经网络(CNN)和循环神经网络(RNN)等概念及应用
人工智能·深度学习·神经网络
我们的五年2 小时前
【Linux课程学习】:第二十一弹---深入理解信号(中断,信号,kill,abort,raise,larm函数)
linux·服务器·后端·深度学习·ubuntu·机器学习
Small___ming3 小时前
【学习笔记】深入浅出详解Pytorch中的View, reshape, unfold,flatten等方法。
人工智能·pytorch·笔记·python·深度学习·学习
老板多放点香菜3 小时前
Day10 误差反向传播法必需的链式法则
人工智能·深度学习·神经网络·线性代数·机器学习
杨善锦5 小时前
RNN网络详解
人工智能·rnn·深度学习
audyxiao0016 小时前
首次成功尝试!使用多模态无监督聚类的语义发现
人工智能·深度学习·机器学习·数据挖掘·聚类