LSTM (Long Short-Term Memory)

正如其名它是长时记忆和短时记忆相结合

RNN中将序列信息进行运用,但是也存在他的缺点就是随着时间序列的长度增加,产生梯度消失和梯度爆炸问题,因此长期记忆能力有限,所以引出LSTM。(但是对于较短的序列,RNN 可能能够较好地学习到其中的模式和关系。)

LSTM相当于给RNN模块增加了一个笔记本以达到长期记忆的效果

LSMT模块:

LSTM主要包含四个门(遗忘门输入门候选记忆输出门)来决定当前时刻的隐状态和记忆单元如何更新。对于每个时间步,LSTM会基于当前的输入和上一时刻的隐状态以及记忆单元来进行计算。

LSTM的一些核心公式:

遗忘门(Forget gate)决定上一时刻的记忆单元中有多少信息被遗忘:

输入门(Input gate)决定当前时刻输入的信息有多少被存储在记忆单元中:

候选记忆(Candidate memory)决定当前输入的候选记忆内容:

更新记忆单元(Update cell state)基于遗忘门和输入门来更新记忆单元:

输出门(Output gate)决定当前时刻的输出(隐状态):

计算隐状态(Output hidden state):

相关推荐
江上鹤.1483 小时前
Day40 复习日
人工智能·深度学习·机器学习
行如流水3 小时前
BLIP和BLIP2解析
深度学习
木头左3 小时前
LSTM量化交易策略中时间序列预测的关键输入参数分析与Python实现
人工智能·python·lstm
cskywit4 小时前
MobileMamba中的小波分析
人工智能·深度学习
HyperAI超神经4 小时前
【vLLM 学习】Prithvi Geospatial Mae
人工智能·python·深度学习·学习·大语言模型·gpu·vllm
L.fountain8 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
لا معنى له9 小时前
学习笔记:卷积神经网络(CNN)
人工智能·笔记·深度学习·神经网络·学习·cnn
资源补给站9 小时前
论文13 | Nature: 数据驱动的地球系统科学的深度学习和过程理解
人工智能·深度学习
金融小师妹9 小时前
非农数据LSTM时序建模强化未来降息预期,GVX-GARCH驱动金价4300点位多空博弈
大数据·人工智能·深度学习
weixin_395448919 小时前
迁移后的主要升级点(TDA4 相对 TDA2)
人工智能·深度学习·机器学习