LSTM (Long Short-Term Memory)

正如其名它是长时记忆和短时记忆相结合

RNN中将序列信息进行运用,但是也存在他的缺点就是随着时间序列的长度增加,产生梯度消失和梯度爆炸问题,因此长期记忆能力有限,所以引出LSTM。(但是对于较短的序列,RNN 可能能够较好地学习到其中的模式和关系。)

LSTM相当于给RNN模块增加了一个笔记本以达到长期记忆的效果

LSMT模块:

LSTM主要包含四个门(遗忘门输入门候选记忆输出门)来决定当前时刻的隐状态和记忆单元如何更新。对于每个时间步,LSTM会基于当前的输入和上一时刻的隐状态以及记忆单元来进行计算。

LSTM的一些核心公式:

遗忘门(Forget gate)决定上一时刻的记忆单元中有多少信息被遗忘:

输入门(Input gate)决定当前时刻输入的信息有多少被存储在记忆单元中:

候选记忆(Candidate memory)决定当前输入的候选记忆内容:

更新记忆单元(Update cell state)基于遗忘门和输入门来更新记忆单元:

输出门(Output gate)决定当前时刻的输出(隐状态):

计算隐状态(Output hidden state):

相关推荐
听麟19 分钟前
HarmonyOS 6.0+ 跨端会议助手APP开发实战:多设备接续与智能纪要全流程落地
分布式·深度学习·华为·区块链·wpf·harmonyos
2401_8362358634 分钟前
名片识别产品:技术要点与应用场景深度解析
人工智能·科技·深度学习·ocr
龙山云仓1 小时前
No159:AI中国故事-对话娄敬——戍策长安与AI远见:草根智慧与国都定鼎
人工智能·深度学习·机器学习
Coding茶水间3 小时前
基于深度学习的番茄叶子病虫害监测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测
上进小菜猪4 小时前
基于 YOLOv8 的多水果智能识别系统工程化实战 [目标检测完整源码]
深度学习
MoonOutCloudBack6 小时前
VeRL 框架中的奖励 (reward) 与奖励模型:从 PPO 配置到实现细节
人工智能·深度学习·语言模型·自然语言处理
alfred_torres6 小时前
MedIA 2025 | TopoTxR:拓扑学“外挂”加持,深度学习精准预测乳腺癌化疗响应
人工智能·深度学习·拓扑学
小雨中_6 小时前
3.1 RLHF:基于人类反馈的强化学习
人工智能·python·深度学习·算法·动态规划
Fairy要carry6 小时前
面试-冷启动
深度学习
硅谷秋水7 小时前
通过测试-时强化学习实现VLA的动态自适应
深度学习·机器学习·计算机视觉·语言模型·机器人