LSTM (Long Short-Term Memory)

正如其名它是长时记忆和短时记忆相结合

RNN中将序列信息进行运用,但是也存在他的缺点就是随着时间序列的长度增加,产生梯度消失和梯度爆炸问题,因此长期记忆能力有限,所以引出LSTM。(但是对于较短的序列,RNN 可能能够较好地学习到其中的模式和关系。)

LSTM相当于给RNN模块增加了一个笔记本以达到长期记忆的效果

LSMT模块:

LSTM主要包含四个门(遗忘门输入门候选记忆输出门)来决定当前时刻的隐状态和记忆单元如何更新。对于每个时间步,LSTM会基于当前的输入和上一时刻的隐状态以及记忆单元来进行计算。

LSTM的一些核心公式:

遗忘门(Forget gate)决定上一时刻的记忆单元中有多少信息被遗忘:

输入门(Input gate)决定当前时刻输入的信息有多少被存储在记忆单元中:

候选记忆(Candidate memory)决定当前输入的候选记忆内容:

更新记忆单元(Update cell state)基于遗忘门和输入门来更新记忆单元:

输出门(Output gate)决定当前时刻的输出(隐状态):

计算隐状态(Output hidden state):

相关推荐
MM_MS3 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
齐齐大魔王4 小时前
Pascal VOC 数据集
人工智能·深度学习·数据集·voc
Hcoco_me5 小时前
RNN(循环神经网络)
人工智能·rnn·深度学习
柠柠酱8 小时前
【深度学习Day5】决战 CIFAR-10:手把手教你搭建第一个“正经”的卷积神经网络 (附调参心法)
深度学习
gravity_w8 小时前
Hugging Face使用指南
人工智能·经验分享·笔记·深度学习·语言模型·nlp
Yeats_Liao9 小时前
MindSpore开发之路(二十六):系列总结与学习路径展望
人工智能·深度学习·学习·机器学习
UnderTurrets10 小时前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo36410 小时前
pytorch深度学习笔记13
pytorch·笔记·深度学习
高洁0110 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
lambo mercy11 小时前
无监督学习
人工智能·深度学习