opencv图片的纠正透视转换函数的应用,水印的添加,轮廓的绘制

一、透视转换函数实现图片的纠正

代码如下:

python 复制代码
import cv2
import numpy as np


img = cv2.imread('./picture.png')

p1=np.array([[175,142],[621,34],[85,484],[653,564]],dtype=np.float32)
p2=np.array([[min(p1[:,0]),min(p1[:,1])],
             [max(p1[:,0]),min(p1[:,1])],
             [min(p1[:,0]),max(p1[:,1])],
             [max(p1[:,0]),max(p1[:,1])]],dtype=np.float32)

M = cv2.getPerspectiveTransform(p1,p2)

img_Perspective=cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))

cv2.imshow('1',img)
cv2.imshow('2',img_Perspective)
cv2.waitKey(0)

p1,p2分别是四个源坐标点和目标坐标点

效果图象如下:


二、水印添加

原理:对logo图像进行掩膜制作之后与背景图与运算,之后再与logo使用add函数

python 复制代码
import cv2

logo = cv2.imread('./girl.png')
logo2 = cv2.imread('./girl2.png')
img = cv2.imread('./background.png')

logo_gray = cv2.cvtColor(logo,cv2.COLOR_BGR2GRAY)
logo_gray2 = cv2.cvtColor(logo2,cv2.COLOR_BGR2GRAY)

_,logo_binary=cv2.threshold(logo_gray,3,255,cv2.THRESH_BINARY_INV)
_,logo_binary2=cv2.threshold(logo_gray2,1,255,cv2.THRESH_BINARY_INV)

ROI=img[100:100+logo.shape[0],100:100+logo.shape[1]]
ROI2=img[80:80+logo2.shape[0],500:500+logo2.shape[1]]

ROI_logo=cv2.bitwise_and(ROI,ROI,mask=logo_binary)
ROI_logo2=cv2.bitwise_and(ROI2,ROI2,mask=logo_binary2)

img_logo=cv2.add(ROI_logo,logo)
img_logo2=cv2.add(ROI_logo2,logo2)

img[100:100+logo.shape[0],100:100+logo.shape[1]]=img_logo
img[80:80+logo2.shape[0],500:500+logo2.shape[1]]= img_logo2

cv2.imshow('1',logo_binary)
cv2.imshow('2',ROI_logo)
cv2.imshow('3',img_logo)
cv2.imshow('4',img)
cv2.waitKey(0)

三、轮廓的绘制

原理: drawContours和findContours函数的使用,先使用findContours找到二值化的图像的轮廓,在根据需要画出指定的轮廓

python 复制代码
import cv2

img = cv2.imread('./number.png')

img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

_,img_binary=cv2.threshold(img_gray,125,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

contours,hierarchy=cv2.findContours(img_binary,     #二值化的图
                                    cv2.RETR_LIST,  #查询轮廓方式
                                    cv2.CHAIN_APPROX_SIMPLE)        #保存轮廓坐标点的方式
img_copy=img.copy() #拷贝不然会修改图像
img_draw=cv2.drawContours(img_copy, #绘制的图像
                          contours, #轮廓的顶点坐标集
                          -1,#所有轮廓
                          (0,0,255),
                          3 #线条粗细
                             )

cv2.imshow('1',img)
cv2.imshow('2',img_draw)
cv2.waitKey(0)
相关推荐
5Gcamera14 小时前
4G body camera BC310/BC310D user manual
人工智能·边缘计算·智能安全帽·执法记录仪·smarteye
爱喝可乐的老王14 小时前
机器学习中常用交叉验证总结
人工智能·机器学习
公链开发15 小时前
2026 Web3机构级风口:RWA Tokenization + ZK隐私系统定制开发全解析
人工智能·web3·区块链
wyw000015 小时前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了15 小时前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
_codemonster15 小时前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师16 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
laplace012316 小时前
第七章 构建自己的agent智能体框架
网络·人工智能·microsoft·agent
诗词在线16 小时前
中国古代诗词名句按主题分类有哪些?(爱国 / 思乡 / 送别)
人工智能·python·分类·数据挖掘
高锰酸钾_16 小时前
机器学习-L1正则化和L2正则化解决过拟合问题
人工智能·python·机器学习