opencv图片的纠正透视转换函数的应用,水印的添加,轮廓的绘制

一、透视转换函数实现图片的纠正

代码如下:

python 复制代码
import cv2
import numpy as np


img = cv2.imread('./picture.png')

p1=np.array([[175,142],[621,34],[85,484],[653,564]],dtype=np.float32)
p2=np.array([[min(p1[:,0]),min(p1[:,1])],
             [max(p1[:,0]),min(p1[:,1])],
             [min(p1[:,0]),max(p1[:,1])],
             [max(p1[:,0]),max(p1[:,1])]],dtype=np.float32)

M = cv2.getPerspectiveTransform(p1,p2)

img_Perspective=cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))

cv2.imshow('1',img)
cv2.imshow('2',img_Perspective)
cv2.waitKey(0)

p1,p2分别是四个源坐标点和目标坐标点

效果图象如下:


二、水印添加

原理:对logo图像进行掩膜制作之后与背景图与运算,之后再与logo使用add函数

python 复制代码
import cv2

logo = cv2.imread('./girl.png')
logo2 = cv2.imread('./girl2.png')
img = cv2.imread('./background.png')

logo_gray = cv2.cvtColor(logo,cv2.COLOR_BGR2GRAY)
logo_gray2 = cv2.cvtColor(logo2,cv2.COLOR_BGR2GRAY)

_,logo_binary=cv2.threshold(logo_gray,3,255,cv2.THRESH_BINARY_INV)
_,logo_binary2=cv2.threshold(logo_gray2,1,255,cv2.THRESH_BINARY_INV)

ROI=img[100:100+logo.shape[0],100:100+logo.shape[1]]
ROI2=img[80:80+logo2.shape[0],500:500+logo2.shape[1]]

ROI_logo=cv2.bitwise_and(ROI,ROI,mask=logo_binary)
ROI_logo2=cv2.bitwise_and(ROI2,ROI2,mask=logo_binary2)

img_logo=cv2.add(ROI_logo,logo)
img_logo2=cv2.add(ROI_logo2,logo2)

img[100:100+logo.shape[0],100:100+logo.shape[1]]=img_logo
img[80:80+logo2.shape[0],500:500+logo2.shape[1]]= img_logo2

cv2.imshow('1',logo_binary)
cv2.imshow('2',ROI_logo)
cv2.imshow('3',img_logo)
cv2.imshow('4',img)
cv2.waitKey(0)

三、轮廓的绘制

原理: drawContours和findContours函数的使用,先使用findContours找到二值化的图像的轮廓,在根据需要画出指定的轮廓

python 复制代码
import cv2

img = cv2.imread('./number.png')

img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

_,img_binary=cv2.threshold(img_gray,125,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

contours,hierarchy=cv2.findContours(img_binary,     #二值化的图
                                    cv2.RETR_LIST,  #查询轮廓方式
                                    cv2.CHAIN_APPROX_SIMPLE)        #保存轮廓坐标点的方式
img_copy=img.copy() #拷贝不然会修改图像
img_draw=cv2.drawContours(img_copy, #绘制的图像
                          contours, #轮廓的顶点坐标集
                          -1,#所有轮廓
                          (0,0,255),
                          3 #线条粗细
                             )

cv2.imshow('1',img)
cv2.imshow('2',img_draw)
cv2.waitKey(0)
相关推荐
大千AI助手2 小时前
代价复杂度剪枝(CCP)详解:原理、实现与应用
人工智能·决策树·机器学习·剪枝·大千ai助手·代价复杂度剪枝·ccp
zl_vslam3 小时前
SLAM中的非线性优-3D图优化之李群李代数在Opencv-PNP中的应用(四)
人工智能·opencv·算法·计算机视觉
whaosoft-1433 小时前
51c视觉~3D~合集8
人工智能
澳鹏Appen5 小时前
数据集月度精选 | 高质量具身智能数据集:打开机器人“感知-决策-动作”闭环的钥匙
人工智能·机器人·具身智能
q***71017 小时前
开源模型应用落地-工具使用篇-Spring AI-Function Call(八)
人工智能·spring·开源
极限实验室7 小时前
Coco AI 参选 Gitee 2025 最受欢迎开源软件!您的每一票,都是对中国开源的硬核支持
人工智能·开源
secondyoung7 小时前
Mermaid流程图高效转换为图片方案
c语言·人工智能·windows·vscode·python·docker·流程图
iFlow_AI7 小时前
iFlow CLI Hooks 「从入门到实战」应用指南
开发语言·前端·javascript·人工智能·ai·iflow·iflow cli
Shang180989357267 小时前
THC63LVD1027D一款10位双链路LVDS信号中继器芯片,支持WUXGA分辨率视频数据传输THC63LVD1027支持30位数据通道方案
人工智能·考研·信息与通信·信号处理·thc63lvd1027d·thc63lvd1027
飞哥数智坊8 小时前
项目太大,AI无法理解?试试这3种思路
人工智能·ai编程