opencv图片的纠正透视转换函数的应用,水印的添加,轮廓的绘制

一、透视转换函数实现图片的纠正

代码如下:

python 复制代码
import cv2
import numpy as np


img = cv2.imread('./picture.png')

p1=np.array([[175,142],[621,34],[85,484],[653,564]],dtype=np.float32)
p2=np.array([[min(p1[:,0]),min(p1[:,1])],
             [max(p1[:,0]),min(p1[:,1])],
             [min(p1[:,0]),max(p1[:,1])],
             [max(p1[:,0]),max(p1[:,1])]],dtype=np.float32)

M = cv2.getPerspectiveTransform(p1,p2)

img_Perspective=cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))

cv2.imshow('1',img)
cv2.imshow('2',img_Perspective)
cv2.waitKey(0)

p1,p2分别是四个源坐标点和目标坐标点

效果图象如下:


二、水印添加

原理:对logo图像进行掩膜制作之后与背景图与运算,之后再与logo使用add函数

python 复制代码
import cv2

logo = cv2.imread('./girl.png')
logo2 = cv2.imread('./girl2.png')
img = cv2.imread('./background.png')

logo_gray = cv2.cvtColor(logo,cv2.COLOR_BGR2GRAY)
logo_gray2 = cv2.cvtColor(logo2,cv2.COLOR_BGR2GRAY)

_,logo_binary=cv2.threshold(logo_gray,3,255,cv2.THRESH_BINARY_INV)
_,logo_binary2=cv2.threshold(logo_gray2,1,255,cv2.THRESH_BINARY_INV)

ROI=img[100:100+logo.shape[0],100:100+logo.shape[1]]
ROI2=img[80:80+logo2.shape[0],500:500+logo2.shape[1]]

ROI_logo=cv2.bitwise_and(ROI,ROI,mask=logo_binary)
ROI_logo2=cv2.bitwise_and(ROI2,ROI2,mask=logo_binary2)

img_logo=cv2.add(ROI_logo,logo)
img_logo2=cv2.add(ROI_logo2,logo2)

img[100:100+logo.shape[0],100:100+logo.shape[1]]=img_logo
img[80:80+logo2.shape[0],500:500+logo2.shape[1]]= img_logo2

cv2.imshow('1',logo_binary)
cv2.imshow('2',ROI_logo)
cv2.imshow('3',img_logo)
cv2.imshow('4',img)
cv2.waitKey(0)

三、轮廓的绘制

原理: drawContours和findContours函数的使用,先使用findContours找到二值化的图像的轮廓,在根据需要画出指定的轮廓

python 复制代码
import cv2

img = cv2.imread('./number.png')

img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

_,img_binary=cv2.threshold(img_gray,125,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

contours,hierarchy=cv2.findContours(img_binary,     #二值化的图
                                    cv2.RETR_LIST,  #查询轮廓方式
                                    cv2.CHAIN_APPROX_SIMPLE)        #保存轮廓坐标点的方式
img_copy=img.copy() #拷贝不然会修改图像
img_draw=cv2.drawContours(img_copy, #绘制的图像
                          contours, #轮廓的顶点坐标集
                          -1,#所有轮廓
                          (0,0,255),
                          3 #线条粗细
                             )

cv2.imshow('1',img)
cv2.imshow('2',img_draw)
cv2.waitKey(0)
相关推荐
clorisqqq1 分钟前
《人工智能现代方法(第四版)》笔记 启程
人工智能·笔记
vibag3 分钟前
LangSmith监控
人工智能·python·语言模型·langchain·大模型
严文文-Chris8 分钟前
向量内积是什么?解决什么问题?
人工智能
亦复何言??11 分钟前
过拟合/灾难性遗忘:SFT vs on-policy RL
人工智能
飞哥数智坊12 分钟前
别让 AI 成了你的“后门”:一个被忽视的安全盲区
人工智能
六边形战士DONK23 分钟前
[强化学习基础05-2] 压缩映射定理
人工智能
weisian15129 分钟前
入门篇--知名企业-18-阿里巴巴-6--DashScope(灵积):从新手入门到企业落地,推开AI普惠之门,让智能触手可及
人工智能·阿里云·dashscope·灵积平台
2401_8414956434 分钟前
【DeepSeek系列】论文《mHC: Manifold-Constrained Hyper-Connections》全流程复现详解(附Python代码)
人工智能·pytorch·python·深度学习·论文复现·deepseek·mhc模型
万俟淋曦39 分钟前
【论文速递】2025年第47周(Nov-16-22)(Robotics/Embodied AI/LLM)
人工智能·机器学习·机器人·大模型·论文·robotics·具身智能
风途知识百科40 分钟前
太阳能杀虫灯——风吸式物联网杀虫灯
大数据·人工智能·物联网