数据结构(C语言版)-6.查找

1. 查找的基本概念

2. 静态查找

2.1 顺序查找

c 复制代码
typedef int KeyType;
typedef int InfoType;
typedef struct
{
	KeyType key;
	InfoType otherdata;
}SeqList; // 顺序表类型
// 顺序查找
c 复制代码
int SeqSearch(SeqList R[], int n, int k)
{
	int i = n;
	R[0].key = k;  // R[0].key为查找不成功的监视哨
	while (R[i].key != k)
		i--;
	return i; // 查找成功返回所找元素的索引,否则返回0;
}

2.2 有序表的查找

二分查找

c 复制代码
int BinarySearch(SeqList R[], int n, int k)
{
	int left = 0, right = n - 1;
	int mid = 0;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (R[mid].key > k)
			right = mid - 1;
		else if (R[mid].key < k)
			left = mid + 1;
		else
			return mid;
	}
	return 0;// 没有找到
}

分块查找(索引顺序查找)

3. 树表形式的动态查找表

3.1 二叉排序树

二叉排序树的查找操作

c 复制代码
// 二叉排序树的查找操作
BSTree* BSTSearch(BSTree* t, int k)
{
	while (t != NULL)
	{
		if (t->key > k)
			t = t->lchild;
		else if (t->key < k)
			t = t->rchild;
		else
			return t;
	}
	return NULL;
}

二叉排序树的插入操作和二叉树排序树的构造

  • 愚蠢的bug,直接拿着main函数传入的指针遍历二叉排序树,导致每次插入节点时都会丢失二叉排序树的根
c 复制代码
void BSTCreate(BSTree** t, int k)
{
	BSTree* pre = NULL;
	while ((*t) != NULL)
	{
		if ((*t)->key > k) {
			pre = *t;
			*t = (*t)->lchild;
		}
		else if ((*t)->key < k) {
			printf("______________,右子树\n");
			pre = *t;
			*t = (*t)->rchild;
		}
		else  // 所查节点已经存在
			break;
	} 
	
	//当所查节点不存在时
	if (*t == NULL)
	{
		
		BSTree* tmp = (BSTree*)malloc(sizeof(BSTree));
		tmp->lchild = NULL;
		tmp->rchild = NULL;
		tmp->key = k;
		if (pre != NULL) {
			if (pre->key > k) {  // 应该插入pre的左孩子
				pre->lchild = tmp;
			}
			else { // 应该插入pre的右孩子
				printf("应该插入pre的右孩子\n");
				pre->rchild = tmp;
			}
		}
		else { // 二叉排序树还未建立
			printf("建立二叉排序树\n");
			*t = tmp;
		}
	}
		
}
  • 正确的方式
c 复制代码
void BSTCreate(BSTree** t, int k)
{
	
	BSTree* pre = NULL,*current = *t;
	while (current != NULL)
	{
		if (current->key > k) {
			pre = current;
			current = current->lchild;
		}
		else if (current->key < k) {
		/*	printf("______________,右子树\n");*/
			pre = current;
			current = current->rchild;
		}
		else  // 所查节点已经存在
			return;
	} 
		BSTree* tmp = (BSTree*)malloc(sizeof(BSTree));
		tmp->lchild = NULL;
		tmp->rchild = NULL;
		tmp->key = k;
		if (pre != NULL) {
			if (pre->key > k) {  // 应该插入pre的左孩子
				pre->lchild = tmp;
			}
			else { // 应该插入pre的右孩子
				//printf("应该插入pre的右孩子\n");
				pre->rchild = tmp;
			}
		}
		// 二叉排序树还未建立
		else { 
			printf("建立二叉排序树\n");
			*t = tmp;
		}
		
}


删除二叉排序树中的节点


c 复制代码
void BSTDeleteLeafChild(BSTree* pre, BSTree* current)
{
	if (pre->lchild == current) // 待删除节点为pre的左孩子
	{
		pre->lchild = NULL;
	}
	else if (pre->rchild == current) {
		pre->rchild = NULL;
	}
	free(current);
	current = NULL;
}
void BSTDeleteRightChild(BSTree* pre, BSTree* current)
{
	// 待删除节点current只有右孩子,直接将该有孩子替换到待删除节点位置即可
	if (pre->lchild == current) // 待删除节点为pre的左孩子
	{
		pre->lchild = current->rchild;
		free(current);
		current = NULL;
	}
	else if (pre->rchild == current) {
		pre->rchild = current->rchild;
		free(current);
		current = NULL;
	}
	else {
		printf("BSTDeleteRightChild:pre和current没有父子关系!!!\n");
	}

}
void BSTDeleteLeftChild(BSTree* pre, BSTree* current)
{
	// 待删除节点current只有左孩子,直接将该左孩子替换到待删除节点位置即可
	if (pre->lchild == current) // 待删除节点为pre的左孩子
	{
		pre->lchild = current->lchild;
		free(current);
		current = NULL;
	}
	else if (pre->rchild == current) {
		pre->rchild = current->lchild;
		free(current);
		current = NULL;
	}
	else {
		printf("BSTDeleteRightChild:pre和current没有父子关系!!!\n");
	}
}
// 在二叉排序树种删除某个节点
void BSTDelete(BSTree** t, int k)
{
	/*
		会出现四种情况
		1. 待删除的节点为叶子
		2. 待删除的节点只有左孩子
		3. 待删除节点只有右孩子
		4. 待删除节点左右孩子都有
	*/
	BSTree* pre = NULL, * current = *t;
	while (current != NULL)
	{
		if (current->key > k) {
			pre = current;
			current = current->lchild;
		}
		else if (current->key < k) {
			pre = current;
			current = current->rchild;
		}
		else  // 节点找到
			break;
	}
	if (current == NULL)
	{
		printf("该节点没有找到\n");
		return;
	}
	//1. 待删除的节点为叶子
	if (current->lchild == NULL && current->rchild == NULL)
	{
		BSTDeleteLeafChild(pre, current);
	}
	//2. 待删除的节点只有左孩子
	else if (current->lchild != NULL && current->rchild == NULL)
	{
		BSTDeleteLeftChild(pre, current);
	}
	//3. 待删除节点只有右孩子
	else if (current->lchild == NULL && current->rchild != NULL)
	{
		BSTDeleteRightChild(pre,current);
	}
	//4. 待删除节点左右孩子都有
	else  
	{
		// 1. 首先找到以待删除节点为根的最左节点
		BSTree* t1 = current,*t2 = current;
		while (t2->lchild != NULL)
		{
			t1 = t2;
			t2 = t2->lchild;
		}
		current->key = t2->key;
		 2. 删除最左节点
		if(t2->rchild!=NULL)
			BSTDeleteRightChild(t1, t2);
		else {
			t1->lchild = NULL;
			free(t2);
			t2 = NULL;
		}
	}
}

3.2 平衡二叉树(AVL)



红黑树

红黑树





3.3 B树和B+树




B树



B树的插入


  • 例子



  • 例子
  • 插入15
  • 插入35
  • 插入95
B树的删除

  • 例子


  • 删除92

  • 删除80

    • 删除70

B+树





两者的区别

区别

4. 哈希

4.1 哈希表与哈希方法

4.2 哈希函数

直接定址法

除留余数法

数字分析法

平方取中法

折叠法

4.3 处理冲突的方法

闭散列表

开放地址法
再散列法

开散列表

4.4 哈希表的查找

练习题

相关推荐
星辰烈龙22 分钟前
黑马程序员Java基础9
java·开发语言
山沐与山23 分钟前
【Redis】Redis集群模式架构详解
java·redis·架构
F_D_Z33 分钟前
最长连续序列(Longest Consecutive Sequence)
数据结构·算法·leetcode
ss27334 分钟前
Java并发编程:DelayQueue延迟订单系统
java·python·算法
wcy_101139 分钟前
七大软件设计原则
java·设计规范
invicinble40 分钟前
jar包在执行的时候需要关注的细节(提供一个解构jvm问题的视角)
java·jvm·jar
麦芽糖021942 分钟前
SSE介绍及使用(Server-Send Events)
java
alan07211 小时前
【Java + Elasticsearch全量 & 增量同步实战】
java·elasticsearch·jenkins
WolfGang0073211 小时前
代码随想录算法训练营Day50 | 拓扑排序、dijkstra(朴素版)
数据结构·算法
hashiqimiya1 小时前
后端springboot的接收前端发来的数据反序列化原理
java