二百八十、ClickHouse——用Kettle对DWD层补全的清洗数据进行记录

一、目的

在对DWD层清洗数据进行补全后,需要生成相应的补全记录,作为数据的标记

二、实施步骤

2.1 建表

复制代码
create  table  if not exists  hurys_jw.dwd_data_correction_record(
    data_type      Int32      comment '数据类型 1:转向比,2:统计,3:评价,4:区域,6:静态排队,7:动态排队',
    device_no      String     comment '设备编号',
    id             String     comment '唯一ID',
    create_time    DateTime   comment '创建时间',
    record_type    Int32      comment '记录类型 0:补全,1:修复',
    day            Date       comment '日期'
)
ENGINE = MergeTree
PARTITION BY day
PRIMARY KEY (day,id)
ORDER BY (day,id)
SETTINGS index_granularity = 8192;

2.2 SQL语句

复制代码
--1.2统计数据补全记录
select
       '2' data_type,
       t2.device_no,
       t2.id,
       t2.create_time,
       '0' record_type,
       cast(t2.day as String) day
from hurys_jw.dwd_statistics as t2
left join hurys_jw.ods_statistics as t3
on t3.device_no=t2.device_no and t3.create_time=t2.create_time and t3.lane_no=t2.lane_no
       and t3.section_no = t2.section_no and t3.coil_no=t2.coil_no
where t2.day='2024-12-16'  and  length(t3.device_no)=0
;

注意红色部分,由于DWD清洗表的device_no没有设置允许非空,因此不能使用 t3.device_no is null 作为条件

2.3 Kettle任务

2.3.1 newtime

2.3.2 替换NULL值

2.3.3 clickhouse输入

2.3.4 字段选择

2.3.5 clickhouse输出

2.3.6 Kettle任务运行

搞定!

相关推荐
TDengine (老段)8 小时前
TDengine 转化类函数 TO_CHAR 用户手册
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
黄雪超8 小时前
Kafka——多线程开发消费者实例
大数据·分布式·kafka
ManageEngineITSM10 小时前
从混乱到秩序:IT服务管理如何重塑企业运营效率
大数据·人工智能·程序人生·职场和发展·itsm
青云交11 小时前
Java 大视界 -- 基于 Java 的大数据分布式存储在工业互联网数据管理与边缘计算协同中的创新实践(364)
java·大数据·边缘计算·工业互联网·分布式存储·paxos·数据协同
数据爬坡ing11 小时前
软件工程之可行性研究:从理论到实践的全面解析
大数据·流程图·软件工程·可用性测试
晴天彩虹雨12 小时前
统一调度与编排:构建自动化数据驱动平台
大数据·运维·数据仓库·自动化·big data·etl
SelectDB15 小时前
浩瀚深度:从 ClickHouse 到 Doris,支撑单表 13PB、534 万亿行的超大规模数据分析场景
大数据·数据库·apache
SelectDB15 小时前
公开免费!Apache Doris & SelectDB 培训与认证课程正式上线
大数据·数据库·apache
mykyle15 小时前
Elasticsearch-8.17.0 centos7安装
大数据·elasticsearch·jenkins
大视码垛机15 小时前
协作机器人掀起工厂革命:码垛场景如何用数据重塑制造业命脉?
大数据·数据库·人工智能