PyTorch 2.0 以下版本中设置默认使用 GPU 的方法

PyTorch 2.0 以下版本中设置默认使用 GPU 的方法

在 PyTorch 2.0以下版本中,默认情况下仍然是使用 CPU 进行计算,除非明确指定使用 GPU。在 PyTorch 2.0 以下版本中,虽然没有 torch.set_default_device 的便捷方法,但可以通过显式地将张量、模型和操作分配到 GPU 来使用 GPU。

1. 检查 GPU 可用性

在使用 GPU 之前,首先检查系统中是否有可用的 GPU。

python 复制代码
import torch

# 检查是否有可用的 GPU
print(torch.cuda.is_available())  # 返回 True 或 False

# 检查可用 GPU 的数量
print(torch.cuda.device_count())

# 当前 GPU 名称
if torch.cuda.is_available():
    print(torch.cuda.get_device_name(0))

2. 将张量移动到 GPU

张量可以通过 .to('cuda').cuda() 方法显式地移动到 GPU。

python 复制代码
# 创建一个张量并将其移动到 GPU
x = torch.tensor([1.0, 2.0, 3.0])
x_gpu = x.to('cuda')  # 或 x.cuda()
print(x_gpu.device)  # 输出:cuda:0

# 在 GPU 上进行计算
y = x_gpu * 2
print(y)  # 输出在 GPU 上的结果
3. 将模型移动到 GPU

PyTorch 模型及其参数需要显式地移动到 GPU。

python 复制代码
# 定义一个简单的模型
model = torch.nn.Linear(10, 1)

# 将模型移动到 GPU
model = model.to('cuda')  # 或 model.cuda()

# 检查模型参数所在的设备
print(next(model.parameters()).device)  # 输出:cuda:0
4. 确保输入数据和模型在同一设备上

模型和输入数据需要在同一个设备上,否则会报错。

python 复制代码
# 创建一个张量并移动到 GPU
input_data = torch.randn(5, 10).to('cuda')

# 定义并移动模型到 GPU
model = torch.nn.Linear(10, 1).to('cuda')

# 前向传播
output = model(input_data)
print(output)

5. 使用 torch.device 动态管理设备

可以使用 torch.device 动态管理设备。

python 复制代码
# 定义设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 将张量移动到设备
x = torch.tensor([1.0, 2.0, 3.0]).to(device)

# 将模型移动到设备
model = torch.nn.Linear(10, 1).to(device)

6. 优化器和损失函数的设备兼容性

当使用 GPU 时,模型的输出和目标(target)都需要在同一设备上。

python 复制代码
# 创建数据和目标,并移动到 GPU
data = torch.randn(5, 10).to('cuda')
target = torch.randn(5, 1).to('cuda')

# 定义模型并移动到 GPU
model = torch.nn.Linear(10, 1).to('cuda')

# 定义损失函数
criterion = torch.nn.MSELoss()

# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# 前向传播
output = model(data)
loss = criterion(output, target)

# 反向传播
loss.backward()
optimizer.step()

7. 混合设备计算(可选)

在多 GPU 或混合 CPU/GPU 环境中,可以手动管理每个张量或模型的设备。

python 复制代码
# 在 CPU 上创建张量
x_cpu = torch.tensor([1.0, 2.0, 3.0])

# 在 GPU 上创建张量
x_gpu = x_cpu.to('cuda')

# 将结果移动回 CPU
result = x_gpu * 2
result_cpu = result.to('cpu')
print(result_cpu)

总结

在 PyTorch 2.0 以下版本中,使用 GPU 的核心是 显式地将张量和模型移动到 GPU,并确保所有相关操作在同一设备上完成。以下是核心方法的汇总:

  • 检查 GPU 可用性: torch.cuda.is_available()

  • 移动张量到 GPU: .to('cuda').cuda()

  • 移动模型到 GPU: .to('cuda').cuda()

  • 动态设备管理: torch.device

相关推荐
yiersansiwu123d27 分钟前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
陈天伟教授30 分钟前
人工智能训练师认证教程(2)Python os入门教程
前端·数据库·python
程途拾光15832 分钟前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v37 分钟前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手41 分钟前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
2301_764441331 小时前
Aella Science Dataset Explorer 部署教程笔记
笔记·python·全文检索
爱笑的眼睛111 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.1481 小时前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC1 小时前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能
火星资讯1 小时前
Zenlayer AI Gateway 登陆 Dify 市场,轻装上阵搭建 AI Agent
大数据·人工智能