Finetuning with Together AI — The Easiest SFT Tutorial

This streamlined tutorial guides you through the finetuning process with Together AI. While the official tutorial splits the process across different pages, this guide consolidates everything into a single, easy-to-follow resource.

Note:

  • All commands should be entered in the terminal.
  • The minimal training cost is $5, even with just one entry in the training data.

1. Authentication

Start by setting your Together AI API key:

复制代码
export TOGETHER_API_KEY= <your_api>

2. Prepare Your Dataset

Construct your dataset according to the required data format. You can use either Conversational Data or Instruction Data formats.

Conversational Data Example

复制代码
{
  "messages": [
    {"role": "system", "content": "This is a system prompt."},
    {"role": "user", "content": "Hello, how are you?"},
    {"role": "assistant", "content": "I'm doing well, thank you! How can I help you?"},
    {"role": "user", "content": "Can you explain machine learning?"},
    {"role": "assistant", "content": "Machine learning is..."}
  ]
}

Instruction Data Example

复制代码
{"prompt": "...", "completion": "..."}
{"prompt": "...", "completion": "..."}

3. Upload Your Dataset and Obtain File ID

Upload your dataset using the following command:

复制代码
together files upload <file_name>

Replace <file_name> with the name of your dataset file (e.g., dataset.jsonl).

Upon successful upload, you will receive a response similar to:

复制代码
{
    "id": "file-123456",
    "object": "file",
    "created_at": 1734574470,
    "purpose": "fine-tune",
    "filename": "filename.jsonl",
    "bytes": 0,
    "line_count": 0,
    "processed": false,
    "FileType": "jsonl"
}

Action: Note down the id (e.g., file-123456) for use in the next steps.

4. Select a Model to Fine-Tune

Fine-tuning ModelsA list of all the models available for fine-tuning.docs.together.ai

Use the name listed under the "Model String for API" column. For example: "meta-llama/Llama-3.3--70B-Instruct-Reference"

5. Create a Finetuning Task

Initiate the finetuning process with the following command:

复制代码
together fine-tuning create - training-file file-123456 - model meta-llama/Llama-3.3–70B-Instruct-Reference

Replace:

  • file-123456 with your actual file ID.
  • meta-llama/Llama-3.3--70B-Instruct-Reference with your chosen model string.

If the submission is successful, you will see a response similar to:

复制代码
Submitting a fine-tuning job with the following parameters:
FinetuneRequest(
    training_file='file-123456',
    validation_file='',
    model='meta-llama/Llama-3.3–70B-Instruct-Reference',
    n_epochs=1,
    learning_rate=1e-05,
    lr_scheduler=FinetuneLRScheduler(lr_scheduler_type='linear', lr_scheduler_args=FinetuneLinearLRSchedulerArgs(min_lr_ratio=0.0)),
    warmup_ratio=0.0,
    max_grad_norm=1.0,
    weight_decay=0.0,
    n_checkpoints=1,
    n_evals=0,
    batch_size=32,
    suffix=None,
    wandb_key=None,
    wandb_base_url=None,
    wandb_project_name=None,
    wandb_name=None,
    training_type=LoRATrainingType(type='Lora', lora_r=8, lora_alpha=16, lora_dropout=0.0, lora_trainable_modules='all-linear'),
    train_on_inputs='auto'
)
Successfully submitted a fine-tuning job ft-c1cce2b0-1a90-47e4-8e84-46f76d2c3dcb at 12/19/2024, 10:16:38

Action: Note down the fine-tuning job ID (e.g., ft-c1cce2b0-1a90-47e4-8e84-46f76d2c3dcb).

6. Monitor and Use Your Fine-Tuned Model

Once the finetuning job is complete, you can use your fine-tuned model as follows:

Example in Python

复制代码
from together import Together

client = Together()

response = client.chat.completions.create(
    model="check your model name in your together AI dashboard",
    messages=[{"role": "user", "content": "Could you give me a like?"}],
)
print(response.choices[0].message.content)
相关推荐
OpenBayes6 分钟前
OCR 新范式!DeepSeek 以「视觉压缩」替代传统字符识别;Bald Classification数据集助力高精度人像分类
人工智能·深度学习·分类·数据挖掘·ocr·数据集·deepseek
亚马逊云开发者7 分钟前
Agentic AI基础设施实践经验系列(四):MCP服务器从本地到云端的部署演进
人工智能
知识搬运工人8 分钟前
深入解析U-Net
人工智能
weixin_421133419 分钟前
深度强化学习,用神经网络代替 Q-table
人工智能·深度学习·神经网络
lx7416026989 分钟前
面试可能的问题(自用)
人工智能·自然语言处理
数字化脑洞实验室14 分钟前
智能决策算法的核心原理是什么?
人工智能·算法·机器学习
流烟默14 分钟前
机器学习中拟合、欠拟合、过拟合是什么
人工智能·算法·机器学习
说私域38 分钟前
社群时代下的商业变革:“开源AI智能名片链动2+1模式S2B2C商城小程序”的应用与影响
人工智能·小程序·开源
格林威1 小时前
AOI在风电行业制造领域中的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·机器视觉·aoi
大千AI助手1 小时前
Graph-R1:智能图谱检索增强的结构化多轮推理框架
人工智能·神经网络·大模型·rag·检索增强生成·大千ai助手·graph-r1