Finetuning with Together AI — The Easiest SFT Tutorial

This streamlined tutorial guides you through the finetuning process with Together AI. While the official tutorial splits the process across different pages, this guide consolidates everything into a single, easy-to-follow resource.

Note:

  • All commands should be entered in the terminal.
  • The minimal training cost is $5, even with just one entry in the training data.

1. Authentication

Start by setting your Together AI API key:

复制代码
export TOGETHER_API_KEY= <your_api>

2. Prepare Your Dataset

Construct your dataset according to the required data format. You can use either Conversational Data or Instruction Data formats.

Conversational Data Example

复制代码
{
  "messages": [
    {"role": "system", "content": "This is a system prompt."},
    {"role": "user", "content": "Hello, how are you?"},
    {"role": "assistant", "content": "I'm doing well, thank you! How can I help you?"},
    {"role": "user", "content": "Can you explain machine learning?"},
    {"role": "assistant", "content": "Machine learning is..."}
  ]
}

Instruction Data Example

复制代码
{"prompt": "...", "completion": "..."}
{"prompt": "...", "completion": "..."}

3. Upload Your Dataset and Obtain File ID

Upload your dataset using the following command:

复制代码
together files upload <file_name>

Replace <file_name> with the name of your dataset file (e.g., dataset.jsonl).

Upon successful upload, you will receive a response similar to:

复制代码
{
    "id": "file-123456",
    "object": "file",
    "created_at": 1734574470,
    "purpose": "fine-tune",
    "filename": "filename.jsonl",
    "bytes": 0,
    "line_count": 0,
    "processed": false,
    "FileType": "jsonl"
}

Action: Note down the id (e.g., file-123456) for use in the next steps.

4. Select a Model to Fine-Tune

Fine-tuning ModelsA list of all the models available for fine-tuning.docs.together.ai

Use the name listed under the "Model String for API" column. For example: "meta-llama/Llama-3.3--70B-Instruct-Reference"

5. Create a Finetuning Task

Initiate the finetuning process with the following command:

复制代码
together fine-tuning create - training-file file-123456 - model meta-llama/Llama-3.3–70B-Instruct-Reference

Replace:

  • file-123456 with your actual file ID.
  • meta-llama/Llama-3.3--70B-Instruct-Reference with your chosen model string.

If the submission is successful, you will see a response similar to:

复制代码
Submitting a fine-tuning job with the following parameters:
FinetuneRequest(
    training_file='file-123456',
    validation_file='',
    model='meta-llama/Llama-3.3–70B-Instruct-Reference',
    n_epochs=1,
    learning_rate=1e-05,
    lr_scheduler=FinetuneLRScheduler(lr_scheduler_type='linear', lr_scheduler_args=FinetuneLinearLRSchedulerArgs(min_lr_ratio=0.0)),
    warmup_ratio=0.0,
    max_grad_norm=1.0,
    weight_decay=0.0,
    n_checkpoints=1,
    n_evals=0,
    batch_size=32,
    suffix=None,
    wandb_key=None,
    wandb_base_url=None,
    wandb_project_name=None,
    wandb_name=None,
    training_type=LoRATrainingType(type='Lora', lora_r=8, lora_alpha=16, lora_dropout=0.0, lora_trainable_modules='all-linear'),
    train_on_inputs='auto'
)
Successfully submitted a fine-tuning job ft-c1cce2b0-1a90-47e4-8e84-46f76d2c3dcb at 12/19/2024, 10:16:38

Action: Note down the fine-tuning job ID (e.g., ft-c1cce2b0-1a90-47e4-8e84-46f76d2c3dcb).

6. Monitor and Use Your Fine-Tuned Model

Once the finetuning job is complete, you can use your fine-tuned model as follows:

Example in Python

复制代码
from together import Together

client = Together()

response = client.chat.completions.create(
    model="check your model name in your together AI dashboard",
    messages=[{"role": "user", "content": "Could you give me a like?"}],
)
print(response.choices[0].message.content)
相关推荐
一 铭1 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力4 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心4 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield5 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域6 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技6 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎7 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎7 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊8 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪