Day27 - 大模型微调,LLaMA搭建

指令微调

SFT:Supervised Fine - Tuning

  • 自我认知
    • self-cognition
    • identity
  • 私有知识 / 具体任务
  • 公共知识

LLaMA-Factory 搭建过程

  1. 下载 LLaMA-Factory 源代码
bash 复制代码
​git clone https://github.com/hiyouga/LLaMA-Factory.git
  1. 安装 LLaMA-Factory 依赖包
bash 复制代码
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
  1. 魔塔社区映射端口(各个平台都不一样)
bash 复制代码
export GRADIO_SERVER_PORT=7860 GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
  1. 启动 LLaMA-Factory(LLaMA Board 可视化微调)
bash 复制代码
llamafactory-cli webui

点击链接: http://0.0.0.0:7860


如何微调?

如何修改模型的自我认知?

LLaMA-Factory/data/identity.json ,编辑模式打开该文件,修改{{name}}和{{author}},来改变模型的自我认知。

为了避免过拟合,训练的时候需要增加一些公共知识。

微调的核心是要去设计非常好的指令格式 ,指令格式的设计与上层开发是配套的。这个过程可以想象成:后端写接口,前端调接口去渲染数据,前后端得有个接口约定。

我们微调完大模型后,会将其变为API服务,然后用LangChain去调用,LangChain进行Prompt设计开发。

例如,在构建聊天机器人时,可以使用 LangChain 来搭建机器人的架构、整合各种API和服务,同时精心设计 Prompts 来确保机器人能够准确理解和回应用户的提问。通过不断地测试和优化 Prompts,提升对话的质量,使机器人更加智能和自然。

相关推荐
LiJieNiub10 分钟前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
哥布林学者34 分钟前
吴恩达深度学习课程一:神经网络和深度学习 第三周:浅层神经网络(二)
深度学习·ai
weixin_5195357739 分钟前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a1 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void1 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG1 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的1 小时前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型1 小时前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全
科技新知1 小时前
大厂AI各走“开源”路
人工智能·开源
字节数据平台1 小时前
火山引擎Data Agent再拓新场景,重磅推出用户研究Agent
大数据·人工智能·火山引擎