Day27 - 大模型微调,LLaMA搭建

指令微调

SFT:Supervised Fine - Tuning

  • 自我认知
    • self-cognition
    • identity
  • 私有知识 / 具体任务
  • 公共知识

LLaMA-Factory 搭建过程

  1. 下载 LLaMA-Factory 源代码
bash 复制代码
​git clone https://github.com/hiyouga/LLaMA-Factory.git
  1. 安装 LLaMA-Factory 依赖包
bash 复制代码
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
  1. 魔塔社区映射端口(各个平台都不一样)
bash 复制代码
export GRADIO_SERVER_PORT=7860 GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
  1. 启动 LLaMA-Factory(LLaMA Board 可视化微调)
bash 复制代码
llamafactory-cli webui

点击链接: http://0.0.0.0:7860


如何微调?

如何修改模型的自我认知?

LLaMA-Factory/data/identity.json ,编辑模式打开该文件,修改{{name}}和{{author}},来改变模型的自我认知。

为了避免过拟合,训练的时候需要增加一些公共知识。

微调的核心是要去设计非常好的指令格式 ,指令格式的设计与上层开发是配套的。这个过程可以想象成:后端写接口,前端调接口去渲染数据,前后端得有个接口约定。

我们微调完大模型后,会将其变为API服务,然后用LangChain去调用,LangChain进行Prompt设计开发。

例如,在构建聊天机器人时,可以使用 LangChain 来搭建机器人的架构、整合各种API和服务,同时精心设计 Prompts 来确保机器人能够准确理解和回应用户的提问。通过不断地测试和优化 Prompts,提升对话的质量,使机器人更加智能和自然。

相关推荐
富唯智能7 分钟前
移动+协作+视觉:开箱即用的下一代复合机器人如何重塑智能工厂
人工智能·工业机器人·复合机器人
Antonio9151 小时前
【图像处理】图像的基础几何变换
图像处理·人工智能·计算机视觉
新加坡内哥谈技术2 小时前
Perplexity AI 的 RAG 架构全解析:幕后技术详解
人工智能
武子康2 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
Sirius Wu3 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
忙碌5444 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running4 小时前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界4 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔5 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起5 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer