Day27 - 大模型微调,LLaMA搭建

指令微调

SFT:Supervised Fine - Tuning

  • 自我认知
    • self-cognition
    • identity
  • 私有知识 / 具体任务
  • 公共知识

LLaMA-Factory 搭建过程

  1. 下载 LLaMA-Factory 源代码
bash 复制代码
​git clone https://github.com/hiyouga/LLaMA-Factory.git
  1. 安装 LLaMA-Factory 依赖包
bash 复制代码
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
  1. 魔塔社区映射端口(各个平台都不一样)
bash 复制代码
export GRADIO_SERVER_PORT=7860 GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
  1. 启动 LLaMA-Factory(LLaMA Board 可视化微调)
bash 复制代码
llamafactory-cli webui

点击链接: http://0.0.0.0:7860


如何微调?

如何修改模型的自我认知?

LLaMA-Factory/data/identity.json ,编辑模式打开该文件,修改{{name}}和{{author}},来改变模型的自我认知。

为了避免过拟合,训练的时候需要增加一些公共知识。

微调的核心是要去设计非常好的指令格式 ,指令格式的设计与上层开发是配套的。这个过程可以想象成:后端写接口,前端调接口去渲染数据,前后端得有个接口约定。

我们微调完大模型后,会将其变为API服务,然后用LangChain去调用,LangChain进行Prompt设计开发。

例如,在构建聊天机器人时,可以使用 LangChain 来搭建机器人的架构、整合各种API和服务,同时精心设计 Prompts 来确保机器人能够准确理解和回应用户的提问。通过不断地测试和优化 Prompts,提升对话的质量,使机器人更加智能和自然。

相关推荐
爆改模型6 小时前
【Trans2025】计算机视觉|即插即用|AFANet:炸裂!图像分割新SOTA,轻松碾压传统方法!
人工智能·计算机视觉
陈敬雷-充电了么-CEO兼CTO6 小时前
具身智能多模态感知与场景理解:融合语言模型的多模态大模型
人工智能·python·gpt·语言模型·自然语言处理·chatgpt·多模态
荔枝吻6 小时前
【AI总结】Python BERT 向量化入门指南
人工智能·python·bert
张子夜 iiii6 小时前
传统神经网络实现-----手写数字识别(MNIST)项目
人工智能·pytorch·python·深度学习·算法
微盛AI企微管家6 小时前
中小企业数字化转型卡在哪?选对AI工具+用好企业微信,人力成本直降70%
人工智能·企业微信
沧海一粟青草喂马7 小时前
国产GEO工具哪家强?巨推集团、SEO研究协会网、业界科技三强对比
人工智能
小陈phd7 小时前
高级RAG策略学习(六)——Contextual Chunk Headers(CCH)技术
人工智能·langchain
beot学AI7 小时前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
全息数据7 小时前
DDPM代码讲解【详细!!!】
深度学习·stable diffusion·多模态·ddpm
西猫雷婶7 小时前
神经网络|(十九)概率论基础知识-伽马函数·下
人工智能·深度学习·神经网络·机器学习·回归·scikit-learn·概率论