Day27 - 大模型微调,LLaMA搭建

指令微调

SFT:Supervised Fine - Tuning

  • 自我认知
    • self-cognition
    • identity
  • 私有知识 / 具体任务
  • 公共知识

LLaMA-Factory 搭建过程

  1. 下载 LLaMA-Factory 源代码
bash 复制代码
​git clone https://github.com/hiyouga/LLaMA-Factory.git
  1. 安装 LLaMA-Factory 依赖包
bash 复制代码
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
  1. 魔塔社区映射端口(各个平台都不一样)
bash 复制代码
export GRADIO_SERVER_PORT=7860 GRADIO_ROOT_PATH=/${JUPYTER_NAME}/proxy/7860/
  1. 启动 LLaMA-Factory(LLaMA Board 可视化微调)
bash 复制代码
llamafactory-cli webui

点击链接: http://0.0.0.0:7860


如何微调?

如何修改模型的自我认知?

LLaMA-Factory/data/identity.json ,编辑模式打开该文件,修改{{name}}和{{author}},来改变模型的自我认知。

为了避免过拟合,训练的时候需要增加一些公共知识。

微调的核心是要去设计非常好的指令格式 ,指令格式的设计与上层开发是配套的。这个过程可以想象成:后端写接口,前端调接口去渲染数据,前后端得有个接口约定。

我们微调完大模型后,会将其变为API服务,然后用LangChain去调用,LangChain进行Prompt设计开发。

例如,在构建聊天机器人时,可以使用 LangChain 来搭建机器人的架构、整合各种API和服务,同时精心设计 Prompts 来确保机器人能够准确理解和回应用户的提问。通过不断地测试和优化 Prompts,提升对话的质量,使机器人更加智能和自然。

相关推荐
shangjian0071 小时前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错1 小时前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰1 小时前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
2501_941507942 小时前
【YOLOv26】教育环境中危险物品实时检测系统_基于深度学习的校园安全解决方案
深度学习·安全·yolo
丝斯20112 小时前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习
延凡科技5 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329725 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔7 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案7 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信7 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信