文章目录
题目链接:
题目描述:
解法
解法一:暴力解法:暴力枚举
两层
for
循环本题不能用,用了会超时。
解法二:归并排序
C++ 算法代码:
cpp
class Solution
{
int tmp[50010]; // 用于在归并过程中临时存储排序后的元素
public:
int reversePairs(vector<int>& nums)
{
return mergeSort(nums, 0, nums.size() - 1); //返回逆序对的数量
}
int mergeSort(vector<int>& nums, int left, int right)
{
if(left >= right) return 0; // 基本情况:区间内只有一个元素或为空,没有逆序对
int ret = 0; // 用于存储当前区间内的逆序对数量
// 1. 找中间点,将数组分成两部分
int mid = (left + right) >> 1; // 使用位运算 (left + right) / 2 提高效率
// [left, mid][mid + 1, right]
// 2. 递归地对左右两个子区间进行排序,并计算逆序对数量
// 左边的个数 + 排序 + 右边的个数 + 排序
v // 右半部分的逆序对
// 3. 计算跨越左右两个子区间的逆序对数量
// cur1指向第一个子数组的当前元素
// cur2指向第二个子数组的当前元素
// i指向临时数组的当前位置
int cur1 = left, cur2 = mid + 1, i = 0;
// 当两个子数组都还有元素时,比较并处理
while(cur1 <= mid && cur2 <= right) // 升序的时候
{
if(nums[cur1] <= nums[cur2])
{
tmp[i++] = nums[cur1++];
}
else
{
// 当 nums[cur1] > nums[cur2] 时,说明 cur1 到 mid 之间的所有元素都大于 nums[cur2]
// 因此,逆序对的数量为 mid - cur1 + 1
ret += mid - cur1 + 1;
tmp[i++] = nums[cur2++];
}
}
// 4. 处理一下排序
while(cur1 <= mid) tmp[i++] = nums[cur1++];
while(cur2 <= right) tmp[i++] = nums[cur2++];
// 5. 将临时数组中的合并结果复制回原数组的对应位置
for(int j = left; j <= right; j++)
nums[j] = tmp[j - left];
return ret; // 返回当前区间内的逆序对总数
}
};
图解
例如:nums = [9, 7, 5, 4, 6]
-
mergeSort(nums, 0, nums.size() - 1);->mergeSort(nums, 0, 4);
ret = 0;mid = 2;
ret += mergeSort(nums, left, mid);->ret += mergeSort(nums, 0, 2);
-
mergeSort(nums, 0, 2);
ret = 0;mid = 1;
ret += mergeSort(nums, left, mid);->ret += mergeSort(nums, 0, 1);
-
mergeSort(nums, 0, 1);
ret = 0;mid = 0;
ret += mergeSort(nums, left, mid);->ret += mergeSort(nums, 0, 0);
-
mergeSort(nums, 0, 0);
left = right -> return 0;
-
ret = 0;
ret += mergeSort(nums, mid + 1, right);->ret += mergeSort(nums, 1, 1);
-
mergeSort(nums, 1, 1);
left = right -> return 0;
-
mergeSort(nums, 0, 1);
ret = 0;mid = 0;
cur1=0;cur2=1;i=0
进入
while
循环ret += mid - cur1 + 1;->ret += 0- 0+ 1=1
tmp[i++] = nums[cur2++];->tmp[0] = nums[1];->tmp[0]=7
i=1;cur2=2,
跳出while
循环cur1<mid,tmp[i++] = nums[cur1++];->tmp[1] = nums[0];->tmp[1]=9
i=2;cur1=1
进入
for
循环nums[0]=7
nums[1]=9
return 1
-
mergeSort(nums, 0, 2);
ret = 1;mid = 1;
ret += mergeSort(nums, mid + 1, right);->ret += mergeSort(nums, 2, 2);
-
mergeSort(nums, 2, 2);
left = right -> return 0;
-
mergeSort(nums, 0, 2);
ret = 1;mid = 1;
cur1=0;cur2=2;i=0
进入
while
循环ret += mid - cur1 + 1;->ret = ret + 1- 0+ 1=3
tmp[i++] = nums[cur2++];->tmp[0] = nums[2];->tmp[0]=5
i=1;cur2=3,
跳出while
循环cur1<=mid,tmp[i++] = nums[cur1++];->tmp[1] = nums[0];->tmp[1]=7
i=2;cur1=1
cur1<=mid,tmp[i++] = nums[cur1++];->tmp[2] = nums[1];->tmp[2]=9
i=3;cur1=2
进入
for
循环nums[0]=5
nums[1]=7
nums[2]=9
return 3
-
mergeSort(nums, 0, 4);
ret = 3;mid = 2;
ret += mergeSort(nums, mid + 1, right); ->ret += mergeSort(nums, 3, 4);
-
mergeSort(nums, 3, 4);
ret = 3;mid = 3;
ret += mergeSort(nums, left, mid);->ret += mergeSort(nums, 3, 3);
-
mergeSort(nums, 3, 3);
left = right -> return 0;
-
mergeSort(nums, 3, 4);
ret = 3;mid = 3;
ret += mergeSort(nums, mid + 1, right);->ret += mergeSort(nums, 4, 4);
-
mergeSort(nums, 4, 4);
left = right -> return 0;
-
mergeSort(nums, 3, 4);
ret = 3;mid = 3;
cur1=3;cur2=4;i=0
进入
while
循环tmp[i++] = nums[cur1++];->tmp[0] = nums[3];->tmp[0] = 4
i=1;cur1=4,
跳出while
循环cur2<=right;tmp[i++] = nums[cur2++];->tmp[1] = nums[4];->tmp[1] = 6
i=2;cur2=5
进入
for
循环nums[3]=4
nums[4]=6
return 3
-
mergeSort(nums, 0, 4);
ret = 3;mid = 2;
cur1=0;cur2=3;i=0
进入
while
循环ret += mid - cur1 + 1;->ret = ret + 2- 0+ 1= 3 +3 =6
tmp[i++] = nums[cur2++];->tmp[0] = nums[3];->tmp[0]=4
i=1;cur2=4
nums[cur1]<=nums[cur2];->tmp[i++] = nums[cur1++];->tmp[1] = nums[0];->tmp[1]=5
i=2;cur1=1
ret += mid - cur1 + 1;->ret = ret + 2- 1+ 1= 6 +2 =8
tmp[i++] = nums[cur2++];->tmp[2] = nums[4];->tmp[2]=6
i=3;cur2=5
跳出
while
循环cur1=1,cur2=5
cur1<=mid,tmp[i++] = nums[cur1++];->tmp[3] = nums[1];->tmp[3]=7
i=4;cur1=2
cur1<=mid,tmp[i++] = nums[cur1++];->tmp[2] = nums[2];->tmp[4]=9
i=5;cur1=3
进入
for
循环nums[0]=4
nums[1]=5
nums[2]=6
nums[3]=7
nusm[4]=9