MoCo 对比自监督学习

MoCo通过自监督学习来训练一个效果不错的编码器。

主要实现:

  1. 输入一张图片,图片增强后和原来图片是一个正样本对,其他的图片是负样本对。
  2. 原始图片丢入encoder,其他的图片一起丢入momentum encoder,然后计算InfoNCE,其实就是一个(K+1)的交叉熵,我们需要的是让正样本对之间的概率最大。

问题:

  1. 为什么需要momentum encoder,不能直接使用一样的encoder,或者单独训练两个encoder。

    如果各自训练encoder的话,训练会很不稳定,在对比学习中,模型需要区分正样本和大量的负样本。为了有效地进行这种区分,负样本的表示需要相对稳定。如果使用同一个编码器来同时生成查询和键的表示,编码器参数会随着每次迭代不断变化,这会导致负样本的表示不稳定,从而影响对比学习的效果。

    也有办法解决,就是把batch_size设置得特别大,那么每一轮都能近似得到全局样本的特征,每一轮的对比结果都很好。(SimCLR)。

  2. 那为什么不直接把key的字典固定,只有query的encoder

    使用固定字典而不采用键编码器会导致负样本多样性受限、表示过时、学习信号减弱、过拟合风险增加、扩展性和适应性差。

  3. 通过使用一个队列,然后设置动量更新,使得key的encoder更新缓慢,而且队列又是先进先出,保证队列内的特征表示较为接近,从而实现了节约计算资源,又能保持大量负样本,而且是动态的负样本表示。(队列内不同batch的负样本presentation是不同encoder生成的,但是由于momentum encoder更新缓慢,所以较为相似,从而做到静中有动)

相关推荐
AI大模型学习教程几秒前
Transformer:BERT模型和代码解析
人工智能·llm
代码小将几秒前
java中static学习笔记
java·笔记·学习
LLM大模型2 分钟前
LangChain篇- 一文读懂 LCEL工作流编排
人工智能·程序员·llm
虾球xz7 分钟前
CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx
开发语言·c++·物联网·学习
试剂界的爱马仕36 分钟前
TCA 循环中间体如何改写肝损伤命运【AbMole】
大数据·人工智能·科技·机器学习·ai写作
研一计算机小白一枚43 分钟前
VRFF: Video Registration and FusionFramework 论文详解
人工智能·深度学习·计算机视觉
Leo.yuan1 小时前
数据湖是什么?数据湖和数据仓库的区别是什么?
大数据·运维·数据仓库·人工智能·信息可视化
Y3174291 小时前
python Day46 学习(日志Day15复习)
python·学习·机器学习
仙人掌_lz1 小时前
如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG
人工智能·搜索引擎·ai·金融·llm·rag·mcp
学不会就看1 小时前
selenium学习实战【Python爬虫】
python·学习·selenium