MoCo 对比自监督学习

MoCo通过自监督学习来训练一个效果不错的编码器。

主要实现:

  1. 输入一张图片,图片增强后和原来图片是一个正样本对,其他的图片是负样本对。
  2. 原始图片丢入encoder,其他的图片一起丢入momentum encoder,然后计算InfoNCE,其实就是一个(K+1)的交叉熵,我们需要的是让正样本对之间的概率最大。

问题:

  1. 为什么需要momentum encoder,不能直接使用一样的encoder,或者单独训练两个encoder。

    如果各自训练encoder的话,训练会很不稳定,在对比学习中,模型需要区分正样本和大量的负样本。为了有效地进行这种区分,负样本的表示需要相对稳定。如果使用同一个编码器来同时生成查询和键的表示,编码器参数会随着每次迭代不断变化,这会导致负样本的表示不稳定,从而影响对比学习的效果。

    也有办法解决,就是把batch_size设置得特别大,那么每一轮都能近似得到全局样本的特征,每一轮的对比结果都很好。(SimCLR)。

  2. 那为什么不直接把key的字典固定,只有query的encoder

    使用固定字典而不采用键编码器会导致负样本多样性受限、表示过时、学习信号减弱、过拟合风险增加、扩展性和适应性差。

  3. 通过使用一个队列,然后设置动量更新,使得key的encoder更新缓慢,而且队列又是先进先出,保证队列内的特征表示较为接近,从而实现了节约计算资源,又能保持大量负样本,而且是动态的负样本表示。(队列内不同batch的负样本presentation是不同encoder生成的,但是由于momentum encoder更新缓慢,所以较为相似,从而做到静中有动)

相关推荐
吴佳浩2 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
跨境卫士苏苏2 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力2 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
呱呱巨基3 小时前
Linux 进程概念
linux·c++·笔记·学习
土星云SaturnCloud3 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
小马爱打代码3 小时前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring
你们补药再卷啦3 小时前
ai(三)环境资源管理
人工智能·语言模型·电脑
yong15858553433 小时前
2. Linux C++ muduo 库学习——原子变量操作头文件
linux·c++·学习
飞哥数智坊4 小时前
GLM-4.6V 初探:国产 AI 能边写边自己配图了
人工智能·chatglm (智谱)
杰克逊的日记4 小时前
大模型的原理是什么
人工智能·大模型·gpu·算力