MoCo 对比自监督学习

MoCo通过自监督学习来训练一个效果不错的编码器。

主要实现:

  1. 输入一张图片,图片增强后和原来图片是一个正样本对,其他的图片是负样本对。
  2. 原始图片丢入encoder,其他的图片一起丢入momentum encoder,然后计算InfoNCE,其实就是一个(K+1)的交叉熵,我们需要的是让正样本对之间的概率最大。

问题:

  1. 为什么需要momentum encoder,不能直接使用一样的encoder,或者单独训练两个encoder。

    如果各自训练encoder的话,训练会很不稳定,在对比学习中,模型需要区分正样本和大量的负样本。为了有效地进行这种区分,负样本的表示需要相对稳定。如果使用同一个编码器来同时生成查询和键的表示,编码器参数会随着每次迭代不断变化,这会导致负样本的表示不稳定,从而影响对比学习的效果。

    也有办法解决,就是把batch_size设置得特别大,那么每一轮都能近似得到全局样本的特征,每一轮的对比结果都很好。(SimCLR)。

  2. 那为什么不直接把key的字典固定,只有query的encoder

    使用固定字典而不采用键编码器会导致负样本多样性受限、表示过时、学习信号减弱、过拟合风险增加、扩展性和适应性差。

  3. 通过使用一个队列,然后设置动量更新,使得key的encoder更新缓慢,而且队列又是先进先出,保证队列内的特征表示较为接近,从而实现了节约计算资源,又能保持大量负样本,而且是动态的负样本表示。(队列内不同batch的负样本presentation是不同encoder生成的,但是由于momentum encoder更新缓慢,所以较为相似,从而做到静中有动)

相关推荐
TDengine (老段)1 小时前
TDengine C/C++ 连接器进阶指南
大数据·c语言·c++·人工智能·物联网·时序数据库·tdengine
lixzest1 小时前
PyTorch与Transformer的关系
人工智能·pytorch·transformer
EveryPossible2 小时前
穿透iframe
学习
檐下翻书1732 小时前
产品开发跨职能流程图在线生成工具
大数据·人工智能·架构·流程图·论文笔记
杜子不疼.2 小时前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
木木木一2 小时前
Rust学习记录--C7 Package, Crate, Module
开发语言·学习·rust
腾视科技3 小时前
腾视科技TS-SG-SM7系列AI算力模组:32TOPS算力引擎,开启边缘智能新纪元
人工智能·科技
极新3 小时前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
落羽凉笙8 小时前
Python学习笔记(3)|数据类型、变量与运算符:夯实基础,从入门到避坑(附图解+代码)
笔记·python·学习
Light608 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件