MoCo 对比自监督学习

MoCo通过自监督学习来训练一个效果不错的编码器。

主要实现:

  1. 输入一张图片,图片增强后和原来图片是一个正样本对,其他的图片是负样本对。
  2. 原始图片丢入encoder,其他的图片一起丢入momentum encoder,然后计算InfoNCE,其实就是一个(K+1)的交叉熵,我们需要的是让正样本对之间的概率最大。

问题:

  1. 为什么需要momentum encoder,不能直接使用一样的encoder,或者单独训练两个encoder。

    如果各自训练encoder的话,训练会很不稳定,在对比学习中,模型需要区分正样本和大量的负样本。为了有效地进行这种区分,负样本的表示需要相对稳定。如果使用同一个编码器来同时生成查询和键的表示,编码器参数会随着每次迭代不断变化,这会导致负样本的表示不稳定,从而影响对比学习的效果。

    也有办法解决,就是把batch_size设置得特别大,那么每一轮都能近似得到全局样本的特征,每一轮的对比结果都很好。(SimCLR)。

  2. 那为什么不直接把key的字典固定,只有query的encoder

    使用固定字典而不采用键编码器会导致负样本多样性受限、表示过时、学习信号减弱、过拟合风险增加、扩展性和适应性差。

  3. 通过使用一个队列,然后设置动量更新,使得key的encoder更新缓慢,而且队列又是先进先出,保证队列内的特征表示较为接近,从而实现了节约计算资源,又能保持大量负样本,而且是动态的负样本表示。(队列内不同batch的负样本presentation是不同encoder生成的,但是由于momentum encoder更新缓慢,所以较为相似,从而做到静中有动)

相关推荐
晚霞的不甘2 小时前
小智AI音箱:智能语音交互的未来之选
人工智能·交互·neo4j
飞Link2 小时前
【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
网络·人工智能·音视频
老蒋新思维2 小时前
创客匠人峰会实录:知识变现的场景化革命 —— 创始人 IP 如何在垂直领域建立变现壁垒
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人
老蒋新思维2 小时前
创客匠人峰会深度解析:智能体驱动知识变现的数字资产化路径 —— 创始人 IP 的长期增长密码
人工智能·网络协议·tcp/ip·重构·知识付费·创始人ip·创客匠人
为爱停留2 小时前
Spring AI实现RAG(检索增强生成)详解与实践
人工智能·深度学习·spring
像风没有归宿a3 小时前
2025年人工智能十大技术突破:从AGI到多模态大模型
人工智能
深鱼~3 小时前
十分钟在 openEuler 上搭建本地 AI 服务:LocalAI 快速部署教程
人工智能
专注于大数据技术栈3 小时前
java学习--枚举(Enum)
java·学习
飞哥数智坊3 小时前
不敢把个人信息喂给 AI?OneAIFW 简单搞定隐私保护!
人工智能