卷积神经网络-填充+步长

Padding

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

f通常为奇数(会有中心点+ 好填充)
缺点:

1.多次卷积图像会变小

2.边缘的像素点 在f×f的卷积中覆盖的比较少,而中间的像素点会被多次覆盖到-》会丢失图像的边缘位置的信息

解决方法:

填充

例:在图像外侧填充一层像素,通常用0填充,原本6×6的图像填充成8×8的图像

这张图像在卷积后还是6×6的图像,则输出变成(n+2p-f+1)×(n+2p-f+1)的图像

Valid卷积

含义:不填充,p=0

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

Same卷积

填充后:输出大小和输入大小一样

填充p个像素点

(n+2p)×(n+2p)的图像 * f×f的图像=(n+2p-f+1)×(n+2p-f+1)

n+2p-f+1=n

p=(f-1)/2


例: 过滤器=5,p=(5-1)/2=2,填充两层-》输出图像和输入图像维数一致


卷积步长

例:

用7×7图像 * 3×3图像,步长=2

1.照样对左上角卷积,相加得到第一个数

2.过滤器跳过两个步长

向下移动(计算下面的行时)

公式:

  • n×n图像
  • 过滤器:f×f
  • 步长:s
  • padding:p
    最后卷积结果=[(n+2p-f)/s+1]×[(n+2p-f)/s+1]
    如果除不尽,向下取整,即如果覆盖框到了外面,,则不进行相乘操作

在例子中 s=2

(7+0-3)/2+1=2+1=3

所以最后输出结果是 3×3的图像

相关推荐
西格电力科技1 分钟前
为何要配光伏储能协调控制服务器?核心价值与应用必要性
大数据·运维·服务器·人工智能·架构·能源
王夏奇2 分钟前
ASAP2 Studio简明教程-AI输出,本人整理了一下
人工智能
mqiqe4 分钟前
vLLM(vLLM.ai)K8S生产环境部署Qwen大模型
人工智能·kubernetes·vllm
Hello娃的5 分钟前
【半导体】肖特基接触AND欧姆接触
人工智能·算法
数智顾问10 分钟前
(100页PPT)十分钟学懂战略地图(附下载方式)
大数据·人工智能
shayudiandian12 分钟前
深度学习可视化:用TensorBoard分析模型训练过程
人工智能·深度学习·neo4j
ranchor66614 分钟前
df赋值和.copy的区别(SettingWithCopyWarning)
大数据·人工智能·python
UI设计兰亭妙微15 分钟前
医疗 UX 的 “精准温度”:从 LUTRONIC AM10 看北京兰亭妙微眼中的医疗界面革新
大数据·人工智能·ux·ui设计外包
测试人社区-千羽15 分钟前
构建卓越体验:UX测试评估标准的系统框架与实践指南
人工智能·语言模型·自然语言处理·职场和发展·aigc·ux
晞微16 分钟前
基于 Gradio 构建神经网络 GUI 实验平台:感知器 / BP/Hopfield/AlexNet/VGG/ResNet 一站式实现
人工智能·深度学习·神经网络