卷积神经网络-填充+步长

Padding

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

f通常为奇数(会有中心点+ 好填充)
缺点:

1.多次卷积图像会变小

2.边缘的像素点 在f×f的卷积中覆盖的比较少,而中间的像素点会被多次覆盖到-》会丢失图像的边缘位置的信息

解决方法:

填充

例:在图像外侧填充一层像素,通常用0填充,原本6×6的图像填充成8×8的图像

这张图像在卷积后还是6×6的图像,则输出变成(n+2p-f+1)×(n+2p-f+1)的图像

Valid卷积

含义:不填充,p=0

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

Same卷积

填充后:输出大小和输入大小一样

填充p个像素点

(n+2p)×(n+2p)的图像 * f×f的图像=(n+2p-f+1)×(n+2p-f+1)

n+2p-f+1=n

p=(f-1)/2


例: 过滤器=5,p=(5-1)/2=2,填充两层-》输出图像和输入图像维数一致


卷积步长

例:

用7×7图像 * 3×3图像,步长=2

1.照样对左上角卷积,相加得到第一个数

2.过滤器跳过两个步长

向下移动(计算下面的行时)

公式:

  • n×n图像
  • 过滤器:f×f
  • 步长:s
  • padding:p
    最后卷积结果=[(n+2p-f)/s+1]×[(n+2p-f)/s+1]
    如果除不尽,向下取整,即如果覆盖框到了外面,,则不进行相乘操作

在例子中 s=2

(7+0-3)/2+1=2+1=3

所以最后输出结果是 3×3的图像

相关推荐
人工智能AI技术几秒前
CES 2026启示录:端侧AI部署全攻略——用TensorFlow Lite让AI跑在手机上
人工智能
Loacnasfhia9几秒前
基于Mask R-CNN与RegNetX的钢水罐及未定义物体目标检测系统研究_1
目标检测·r语言·cnn
杀生丸学AI2 分钟前
【世界模型】AI世界模型的两次物理大考(测评)
人工智能·扩散模型·具身智能·视频生成·世界模型·自回归·空间智能
ATM0062 分钟前
专其利AI | 开物之芯团队重磅发布「专其利 AI 专利辅助撰写平台」,30 秒定名、10 分钟出五书!
人工智能·大模型·专利撰写·专其利ai
2401_832298103 分钟前
四大厂商云服务器安全创新对比,筑牢数字化转型安全底座
人工智能
熵减纪元3 分钟前
OpenClaw gateway start 报 401 Invalid API key?一个环境变量的坑
人工智能·aigc
Agentcometoo4 分钟前
2026 AI 元年:当人工智能不再以“创新项目”的形式出现
人工智能·文心一言·2026ai元年·时代趋势
2501_933329554 分钟前
Infoseek数字公关AI中台技术解析:基于AI的智能舆情治理系统架构与实践
人工智能·系统架构
aixiao_xiaoo6 分钟前
【深度学习中计算表面法线计算方法】
人工智能·深度学习
落羽的落羽8 分钟前
【Linux系统】文件IO:理解文件描述符、重定向、缓冲区
linux·服务器·开发语言·数据结构·c++·人工智能·机器学习