卷积神经网络-填充+步长

Padding

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

f通常为奇数(会有中心点+ 好填充)
缺点:

1.多次卷积图像会变小

2.边缘的像素点 在f×f的卷积中覆盖的比较少,而中间的像素点会被多次覆盖到-》会丢失图像的边缘位置的信息

解决方法:

填充

例:在图像外侧填充一层像素,通常用0填充,原本6×6的图像填充成8×8的图像

这张图像在卷积后还是6×6的图像,则输出变成(n+2p-f+1)×(n+2p-f+1)的图像

Valid卷积

含义:不填充,p=0

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

Same卷积

填充后:输出大小和输入大小一样

填充p个像素点

(n+2p)×(n+2p)的图像 * f×f的图像=(n+2p-f+1)×(n+2p-f+1)

n+2p-f+1=n

p=(f-1)/2


例: 过滤器=5,p=(5-1)/2=2,填充两层-》输出图像和输入图像维数一致


卷积步长

例:

用7×7图像 * 3×3图像,步长=2

1.照样对左上角卷积,相加得到第一个数

2.过滤器跳过两个步长

向下移动(计算下面的行时)

公式:

  • n×n图像
  • 过滤器:f×f
  • 步长:s
  • padding:p
    最后卷积结果=[(n+2p-f)/s+1]×[(n+2p-f)/s+1]
    如果除不尽,向下取整,即如果覆盖框到了外面,,则不进行相乘操作

在例子中 s=2

(7+0-3)/2+1=2+1=3

所以最后输出结果是 3×3的图像

相关推荐
企业智能研究14 分钟前
2026,企业如何应用AI Agent赋能业务?
人工智能·云计算·agent
宁远x22 分钟前
【VeRL】Qwen3-30B-A3B-DAPO NPU实践指导
人工智能·深度学习·强化学习
heimeiyingwang38 分钟前
向量数据库VS关系数据库VS非关系数据库
运维·人工智能·重构·架构·机器人
shangyingying_139 分钟前
图像质量评价(IQA)
人工智能·python·神经网络
OPEN-Source40 分钟前
大模型 Agent 实战:多 Agent 太贵太慢?一套系统性的性能与成本优化方案
人工智能·python·agent·rag·deepseek
了不起的云计算V41 分钟前
2026年信创替代关键期:如何选真正“安全好用”的电脑?
人工智能·安全·电脑
一阵寒风41 分钟前
ComfyUI本地部署指南
开发语言·人工智能·python
不惑_1 小时前
通俗理解消息传递机制
人工智能·神经网络·生成对抗网络·架构
OPEN-Source1 小时前
别为多 Agent 而多 Agent:一套实用的 Agent 架构选型指南
人工智能·python·agent·rag·deepseek
说私域1 小时前
以非常6+1体系为支撑 融入AI智能名片商城小程序 提升组织建设效能
大数据·人工智能·小程序·流量运营·私域运营