卷积神经网络-填充+步长

Padding

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

f通常为奇数(会有中心点+ 好填充)
缺点:

1.多次卷积图像会变小

2.边缘的像素点 在f×f的卷积中覆盖的比较少,而中间的像素点会被多次覆盖到-》会丢失图像的边缘位置的信息

解决方法:

填充

例:在图像外侧填充一层像素,通常用0填充,原本6×6的图像填充成8×8的图像

这张图像在卷积后还是6×6的图像,则输出变成(n+2p-f+1)×(n+2p-f+1)的图像

Valid卷积

含义:不填充,p=0

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

Same卷积

填充后:输出大小和输入大小一样

填充p个像素点

(n+2p)×(n+2p)的图像 * f×f的图像=(n+2p-f+1)×(n+2p-f+1)

n+2p-f+1=n

p=(f-1)/2


例: 过滤器=5,p=(5-1)/2=2,填充两层-》输出图像和输入图像维数一致


卷积步长

例:

用7×7图像 * 3×3图像,步长=2

1.照样对左上角卷积,相加得到第一个数

2.过滤器跳过两个步长

向下移动(计算下面的行时)

公式:

  • n×n图像
  • 过滤器:f×f
  • 步长:s
  • padding:p
    最后卷积结果=[(n+2p-f)/s+1]×[(n+2p-f)/s+1]
    如果除不尽,向下取整,即如果覆盖框到了外面,,则不进行相乘操作

在例子中 s=2

(7+0-3)/2+1=2+1=3

所以最后输出结果是 3×3的图像

相关推荐
xcLeigh1 分钟前
AI的提示词专栏:写作助手 Prompt,从提纲到完整文章
人工智能·ai·prompt·提示词
QYR_118 分钟前
热塑性复合树脂市场报告:行业现状、增长动力与未来机遇
大数据·人工智能·物联网
nju_spy11 分钟前
强化学习 -- 无导数随机优化算法玩俄罗斯方块Tetris(交叉熵方法CE + ADP近似动态规划CBMPI)
人工智能·强化学习·策略迭代·近似动态规划·交叉熵方法·价值函数近似·无导数优化
2501_9071368213 分钟前
AI写的软件:legado图源(开源阅读)异次元图源调试器
人工智能·软件需求
LiFileHub15 分钟前
深度学习全景解析:从技术原理到十大领域落地实践
人工智能·深度学习
lbb 小魔仙24 分钟前
AI Agent 开发终极手册:Manus、MetaGPT 与 CrewAI 深度对比
人工智能·ai
适应规律35 分钟前
GPU利用率分析
人工智能
Silence_Jy36 分钟前
Kimi K2技术报告
人工智能·python·深度学习·transformer
AI Echoes40 分钟前
自定义 LangChain 文档加载器使用技巧
数据库·人工智能·python·langchain·prompt·agent
长河41 分钟前
OpenSpec 实战:用规范驱动开发破解 AI 编程协作难题
人工智能