卷积神经网络-填充+步长

Padding

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

f通常为奇数(会有中心点+ 好填充)
缺点:

1.多次卷积图像会变小

2.边缘的像素点 在f×f的卷积中覆盖的比较少,而中间的像素点会被多次覆盖到-》会丢失图像的边缘位置的信息

解决方法:

填充

例:在图像外侧填充一层像素,通常用0填充,原本6×6的图像填充成8×8的图像

这张图像在卷积后还是6×6的图像,则输出变成(n+2p-f+1)×(n+2p-f+1)的图像

Valid卷积

含义:不填充,p=0

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

Same卷积

填充后:输出大小和输入大小一样

填充p个像素点

(n+2p)×(n+2p)的图像 * f×f的图像=(n+2p-f+1)×(n+2p-f+1)

n+2p-f+1=n

p=(f-1)/2


例: 过滤器=5,p=(5-1)/2=2,填充两层-》输出图像和输入图像维数一致


卷积步长

例:

用7×7图像 * 3×3图像,步长=2

1.照样对左上角卷积,相加得到第一个数

2.过滤器跳过两个步长

向下移动(计算下面的行时)

公式:

  • n×n图像
  • 过滤器:f×f
  • 步长:s
  • padding:p
    最后卷积结果=[(n+2p-f)/s+1]×[(n+2p-f)/s+1]
    如果除不尽,向下取整,即如果覆盖框到了外面,,则不进行相乘操作

在例子中 s=2

(7+0-3)/2+1=2+1=3

所以最后输出结果是 3×3的图像

相关推荐
LitchiCheng1 分钟前
Mujoco 如何添加 Apriltag 并获得相机视野进行识别
人工智能·python·开源
想用offer打牌10 分钟前
一站式了解Agent Skills
人工智能·后端·ai编程
一切尽在,你来13 分钟前
LangGraph快速入门
人工智能·python·langchain·ai编程
阿杰学AI1 小时前
AI核心知识110—大语言模型之 AI Collaboration Manager(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·人机交互·ai协作管理员
SCLchuck1 小时前
人工智能-概率密度估计
人工智能·python·概率论·概率密度估计
王解1 小时前
AI Agent记忆模块进化史:从临时缓存到认知架构的设计范式
人工智能·缓存·架构
琅琊榜首20201 小时前
AI+编程实战:小说高效改编短剧全指南
人工智能
新缸中之脑2 小时前
Graphlit: AI代理的上下文图层
大数据·人工智能
用户986356545702 小时前
肝了一个周末,终于把 n8n 自动化工作流完美部署了(附私有化防坑指南)
人工智能
田里的水稻2 小时前
FA_规划和控制(PC)-瑞德斯.谢普路径规划(RSPP))
人工智能·算法·数学建模·机器人·自动驾驶