卷积神经网络-填充+步长

Padding

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

f通常为奇数(会有中心点+ 好填充)
缺点:

1.多次卷积图像会变小

2.边缘的像素点 在f×f的卷积中覆盖的比较少,而中间的像素点会被多次覆盖到-》会丢失图像的边缘位置的信息

解决方法:

填充

例:在图像外侧填充一层像素,通常用0填充,原本6×6的图像填充成8×8的图像

这张图像在卷积后还是6×6的图像,则输出变成(n+2p-f+1)×(n+2p-f+1)的图像

Valid卷积

含义:不填充,p=0

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

Same卷积

填充后:输出大小和输入大小一样

填充p个像素点

(n+2p)×(n+2p)的图像 * f×f的图像=(n+2p-f+1)×(n+2p-f+1)

n+2p-f+1=n

p=(f-1)/2


例: 过滤器=5,p=(5-1)/2=2,填充两层-》输出图像和输入图像维数一致


卷积步长

例:

用7×7图像 * 3×3图像,步长=2

1.照样对左上角卷积,相加得到第一个数

2.过滤器跳过两个步长

向下移动(计算下面的行时)

公式:

  • n×n图像
  • 过滤器:f×f
  • 步长:s
  • padding:p
    最后卷积结果=[(n+2p-f)/s+1]×[(n+2p-f)/s+1]
    如果除不尽,向下取整,即如果覆盖框到了外面,,则不进行相乘操作

在例子中 s=2

(7+0-3)/2+1=2+1=3

所以最后输出结果是 3×3的图像

相关推荐
飞哥数智坊1 分钟前
AutoGLM 开源实测:一句话让 AI 帮我点个鸡排
人工智能·chatglm (智谱)
F_D_Z9 分钟前
简明 | Yolo-v3结构理解摘要
深度学习·神经网络·yolo·计算机视觉·resnet
2022.11.7始学前端21 分钟前
n8n第九节 使用LangChain与Gemini构建带对话记忆的AI助手
java·人工智能·n8n
LYFlied37 分钟前
在AI时代,前端开发者如何构建全栈开发视野与核心竞争力
前端·人工智能·后端·ai·全栈
core5121 小时前
深度解析DeepSeek-R1中GRPO强化学习算法
人工智能·算法·机器学习·deepseek·grpo
Surpass余sheng军1 小时前
AI 时代下的网关技术选型
人工智能·经验分享·分布式·后端·学习·架构
说私域1 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序源码的所有物服务创新研究
人工智能
桃花键神1 小时前
openFuyao在AI推理与大数据场景中的加速方案:技术特性与实践探索
大数据·人工智能
wb043072011 小时前
大模型(LLM)及其应用生态中的关键技术栈
人工智能
颜颜yan_1 小时前
DevUI + Vue 3 入门实战教程:从零构建AI对话应用
前端·vue.js·人工智能