卷积神经网络-填充+步长

Padding

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

f通常为奇数(会有中心点+ 好填充)
缺点:

1.多次卷积图像会变小

2.边缘的像素点 在f×f的卷积中覆盖的比较少,而中间的像素点会被多次覆盖到-》会丢失图像的边缘位置的信息

解决方法:

填充

例:在图像外侧填充一层像素,通常用0填充,原本6×6的图像填充成8×8的图像

这张图像在卷积后还是6×6的图像,则输出变成(n+2p-f+1)×(n+2p-f+1)的图像

Valid卷积

含义:不填充,p=0

n×n的图像 * f×f的图像 = (n-f+1)×(n-f+1)

Same卷积

填充后:输出大小和输入大小一样

填充p个像素点

(n+2p)×(n+2p)的图像 * f×f的图像=(n+2p-f+1)×(n+2p-f+1)

n+2p-f+1=n

p=(f-1)/2


例: 过滤器=5,p=(5-1)/2=2,填充两层-》输出图像和输入图像维数一致


卷积步长

例:

用7×7图像 * 3×3图像,步长=2

1.照样对左上角卷积,相加得到第一个数

2.过滤器跳过两个步长

向下移动(计算下面的行时)

公式:

  • n×n图像
  • 过滤器:f×f
  • 步长:s
  • padding:p
    最后卷积结果=[(n+2p-f)/s+1]×[(n+2p-f)/s+1]
    如果除不尽,向下取整,即如果覆盖框到了外面,,则不进行相乘操作

在例子中 s=2

(7+0-3)/2+1=2+1=3

所以最后输出结果是 3×3的图像

相关推荐
RK_Dangerous4 分钟前
【机器学习】强化学习(3)——深度强化学习的数学知识
人工智能·机器学习
处女座_三月6 分钟前
大模型架构记录3-提示工程
人工智能
nice-wyh11 分钟前
目标检测Anchor-based 与 Anchor-free
人工智能·目标检测·计算机视觉
非优秀程序员32 分钟前
manus的底裤被扒,或为开源软件【browser_use】的套壳产品,目前为MVP阶段并引入了一些深度定制
人工智能·架构·开源
Francek Chen33 分钟前
【现代深度学习技术】卷积神经网络05:汇聚层
人工智能·pytorch·深度学习·神经网络·cnn
訾博ZiBo36 分钟前
Ollama 常用命令
人工智能·ollama
轻松Ai享生活36 分钟前
经过1周的折腾,终于建了一个像抖音一样的推荐系统
人工智能
IT从业者张某某38 分钟前
大语言模型-01-语言模型发展历程-02-从神经网络到ELMo
人工智能·神经网络·语言模型·datawhale
猎人everest1 小时前
机器学习之正则化
人工智能·算法·机器学习