占个坑:利用工作以外的时间,用numpy实现MLP-手写识别

背景

随着近半年的正式工作,一直在做的都是模型后处理相关的,逐渐意识到技术的自我迭代陷入了瓶颈。组里都是搞模型的,对于缺少模型背景的我,很难深刻理解同事将模型和业务结合时好的idear,这使得我难以掌握组里最核心的技术创新。这会导致,虽然组里做的事能被公司乃至业界认可,但我所获甚少。在和导师交流之后,想法还是被支持的,为此我需要开始接触模型,需要更加深刻的认识模型。诚然,回顾之前在csdn更新的文章(python机器学习实战,花书阅读),0到1的突破会很难,但既然导师,同事都支持我个人发展的诉求,愿意给我机会,虽千万人吾往矣。

相关推荐
yLDeveloper7 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2401_836235867 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs7 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
2的n次方_8 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训9 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
pp起床10 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
阿杰学AI11 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
芷栀夏11 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
Yeats_Liao14 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化