背景 随着网络深度的增加,出现了退化问题:更深的网络并不能带来更好的性能,反而可能由于梯度消失或梯度爆炸导致模型训练困难。ResNet通过残差连接有效解决了这一问题。
网络结构 ResNet的核心是残差模块(Residual Block),其通过"跳跃连接"(skip connection)使梯度能够顺利传递,缓解了梯度消失问题。
性能与影响
实际应用案例
-
基本残差模块:
pythonclass BasicBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += identity out = self.relu(out) return out
ResNet-18的代码实现:
pythonclass ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def _make_layer(self, block, out_channels, blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) layers = [] layers.append(block(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels for _ in range(1, blocks): layers.append(block(out_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x # 实例化ResNet-18 model = ResNet(BasicBlock, [2, 2, 2, 2]) print(model)
-
关键创新
-
残差连接:通过引入恒等映射,解决深度网络的退化问题。
-
瓶颈结构:在较深的ResNet中(如ResNet-50、ResNet-101),采用1x1卷积层减少计算量。
-
模块化设计:基于残差模块的层次堆叠,增强了网络的可扩展性。
-
多层深度优化:更深的网络(如ResNet-152)在图像分类任务上获得更高精度。
-
性能:ResNet在ImageNet上以3.57%的错误率刷新了记录。
-
迁移学习:ResNet的预训练模型被广泛应用于目标检测、分割和其他任务中。
-
深远影响:残差学习成为现代深度学习的核心思想,被广泛应用于各种网络设计。
-
医学图像分析:用于病变检测和分割。
-
自动驾驶:作为感知模块的一部分,用于目标检测和语义分割。
-
自然语言处理:结合Transformer模型,用于多模态任务。