datasets 笔记: 文本数据集的预处理(Tokenization)

  • 将文本分割为单词或子单元(tokens),然后将 tokens 映射为数字

0 加载数据集和分词器

python 复制代码
from transformers import AutoTokenizer
from datasets import load_dataset

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
dataset = load_dataset("rotten_tomatoes", split="train")

1 对单条样本进行分词

python 复制代码
tokenizer(dataset[0]["text"])
'''
{'input_ids': [101, 1996, 2600, 2003, 16036, 2000, 2022, 1996, 7398, 2301, 1005, 1055, 2047, 1000, 16608, 1000, 1998, 2008, 2002, 1005, 1055, 2183, 2000, 2191, 1037, 17624, 2130, 3618, 2084, 7779, 29058, 8625, 13327, 1010, 3744, 1011, 18856, 19513, 3158, 5477, 4168, 2030, 7112, 16562, 2140, 1012, 102], 
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
'''

2 对整个数据集进行批量分词

python 复制代码
def tokenization(example):
    return tokenizer(example["text"])

dataset = dataset.map(tokenization, batched=True)
dataset[0].keys()
'''
dict_keys(['text', 'label', 'input_ids', 'token_type_ids', 'attention_mask'])
'''

原先的text和label的基础上,多了input_ids,token_type_ids和attention_mask三个key

3 设置数据集格式以适配 PyTorch

python 复制代码
dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
dataset[0]
'''
{'label': tensor(1),
 'input_ids': tensor([  101,  1996,  2600,  2003, 16036,  2000,  2022,  1996,  7398,  2301,
          1005,  1055,  2047,  1000, 16608,  1000,  1998,  2008,  2002,  1005,
          1055,  2183,  2000,  2191,  1037, 17624,  2130,  3618,  2084,  7779,
         29058,  8625, 13327,  1010,  3744,  1011, 18856, 19513,  3158,  5477,
          4168,  2030,  7112, 16562,  2140,  1012,   102]),
 'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
 'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])}
'''
相关推荐
mtouch33315 小时前
GIS+VR地理信息虚拟现实XR MR AR
大数据·人工智能·ar·无人机·xr·vr·mr
一人の梅雨16 小时前
1688 拍立淘接口深度开发:从图像识别到供应链匹配的技术实现
人工智能·算法·计算机视觉
牛马大师兄16 小时前
STM32独立看门狗IWDG与窗口看门狗WWDG知识梳理笔记
笔记·stm32·单片机·嵌入式硬件·嵌入式·看门狗
dundunmm16 小时前
【数据集】WebQuestions
人工智能·llm·数据集·知识库问答·知识库
wan5555cn16 小时前
Windows 11系统鼠标键盘被禁用问题的全面解决方案
windows·笔记·深度学习·计算机外设
却道天凉_好个秋16 小时前
OpenCV(五):鼠标控制
人工智能·opencv·鼠标控制
zhangrelay16 小时前
ROS云课三分钟-使用动态参数重配置调试Teb导航案例-251008
笔记·学习
IT_陈寒17 小时前
Redis性能优化:5个被低估的配置项让你的QPS提升50%
前端·人工智能·后端
Christo317 小时前
关于K-means和FCM的凸性问题讨论
人工智能·算法·机器学习·数据挖掘·kmeans
BingeBlog17 小时前
[01] Qt的UI框架选择和对比
开发语言·c++·笔记·qt·ui·开源软件