机器学习(四)-回归模型评估指标

文章目录

    • [1. 哪个模型更好?](#1. 哪个模型更好?)
    • [2. 线性回归评估指标](#2. 线性回归评估指标)
    • [3. python 实现线性模型评估指标](#3. python 实现线性模型评估指标)

1. 哪个模型更好?

我们之前已经对房价预测的问题构建了线性模型,并对测试集进行了预测。

如图所示,横坐标是地区人口,纵坐标是房价,红色的点是实际样本分布。

使用不同的算法或者策略构建了两个线性模型,如图,分布是绿色直线和黄色直线所示。

那么如何量化我们构建的线性回归模型性能呢?如何比较这2个模型哪个更好呢?本节我们将给大家介绍一下线性回归常用的评估指标。

2. 线性回归评估指标

线性回归常用的评估指标有4个,下面详细介绍!

Var 为方差。

R2是我们常用的线性回归评估指标,主要的原因之一就是我们通过R2能更好的理解模型的性能好坏。

R^2有以下几个特点:

3. python 实现线性模型评估指标

python 复制代码
# 线性模型评估指标
# 均方误差:MSE
from sklearn.metrics import mean_squared_error
MSE = mean_squared_error(y_test, y_pred)
print("MSE = {}".format(MSE))

# 均方根误差:RMSE
RMSE = np.sqrt(MSE)
print("RMSE = {}".format(RMSE))

# 平均绝对值误差:MAE
from sklearn.metrics import mean_absolute_error
MAE = mean_absolute_error(y_test, y_pred)
print("MAE = {}".format(MAE))

# R^2: R-Squared
from sklearn.metrics import r2_score
R2 = r2_score(y_test, y_pred)
print("R2 = {}".format(R2))

输出结果:

python 复制代码
MSE = 0.17473032823222068
RMSE = 0.4180075695872273
MAE = 0.3406988798247714
R2 = 0.9838332745214976
相关推荐
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者9 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗10 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_10 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信10 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_8362358610 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs10 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习