机器学习(四)-回归模型评估指标

文章目录

    • [1. 哪个模型更好?](#1. 哪个模型更好?)
    • [2. 线性回归评估指标](#2. 线性回归评估指标)
    • [3. python 实现线性模型评估指标](#3. python 实现线性模型评估指标)

1. 哪个模型更好?

我们之前已经对房价预测的问题构建了线性模型,并对测试集进行了预测。

如图所示,横坐标是地区人口,纵坐标是房价,红色的点是实际样本分布。

使用不同的算法或者策略构建了两个线性模型,如图,分布是绿色直线和黄色直线所示。

那么如何量化我们构建的线性回归模型性能呢?如何比较这2个模型哪个更好呢?本节我们将给大家介绍一下线性回归常用的评估指标。

2. 线性回归评估指标

线性回归常用的评估指标有4个,下面详细介绍!

Var 为方差。

R^2是我们常用的线性回归评估指标,主要的原因之一就是我们通过R^2能更好的理解模型的性能好坏。

R^2有以下几个特点:

3. python 实现线性模型评估指标

python 复制代码
# 线性模型评估指标
# 均方误差:MSE
from sklearn.metrics import mean_squared_error
MSE = mean_squared_error(y_test, y_pred)
print("MSE = {}".format(MSE))

# 均方根误差:RMSE
RMSE = np.sqrt(MSE)
print("RMSE = {}".format(RMSE))

# 平均绝对值误差:MAE
from sklearn.metrics import mean_absolute_error
MAE = mean_absolute_error(y_test, y_pred)
print("MAE = {}".format(MAE))

# R^2: R-Squared
from sklearn.metrics import r2_score
R2 = r2_score(y_test, y_pred)
print("R2 = {}".format(R2))

输出结果:

python 复制代码
MSE = 0.17473032823222068
RMSE = 0.4180075695872273
MAE = 0.3406988798247714
R2 = 0.9838332745214976
相关推荐
15年网络推广青哥3 分钟前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
weixin_3875456422 分钟前
探索 AnythingLLM:借助开源 AI 打造私有化智能知识库
人工智能
engchina1 小时前
如何在 Python 中忽略烦人的警告?
开发语言·人工智能·python
paixiaoxin2 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
OpenCSG2 小时前
CSGHub开源版本v1.2.0更新
人工智能
weixin_515202492 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
Altair澳汰尔2 小时前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
机器之心2 小时前
图学习新突破:一个统一框架连接空域和频域
人工智能·后端
AI视觉网奇2 小时前
人脸生成3d模型 Era3D
人工智能·计算机视觉
call me by ur name3 小时前
VLM--CLIP作分类任务的损失函数
人工智能·机器学习·分类