机器学习(四)-回归模型评估指标

文章目录

    • [1. 哪个模型更好?](#1. 哪个模型更好?)
    • [2. 线性回归评估指标](#2. 线性回归评估指标)
    • [3. python 实现线性模型评估指标](#3. python 实现线性模型评估指标)

1. 哪个模型更好?

我们之前已经对房价预测的问题构建了线性模型,并对测试集进行了预测。

如图所示,横坐标是地区人口,纵坐标是房价,红色的点是实际样本分布。

使用不同的算法或者策略构建了两个线性模型,如图,分布是绿色直线和黄色直线所示。

那么如何量化我们构建的线性回归模型性能呢?如何比较这2个模型哪个更好呢?本节我们将给大家介绍一下线性回归常用的评估指标。

2. 线性回归评估指标

线性回归常用的评估指标有4个,下面详细介绍!

Var 为方差。

R2是我们常用的线性回归评估指标,主要的原因之一就是我们通过R2能更好的理解模型的性能好坏。

R^2有以下几个特点:

3. python 实现线性模型评估指标

python 复制代码
# 线性模型评估指标
# 均方误差:MSE
from sklearn.metrics import mean_squared_error
MSE = mean_squared_error(y_test, y_pred)
print("MSE = {}".format(MSE))

# 均方根误差:RMSE
RMSE = np.sqrt(MSE)
print("RMSE = {}".format(RMSE))

# 平均绝对值误差:MAE
from sklearn.metrics import mean_absolute_error
MAE = mean_absolute_error(y_test, y_pred)
print("MAE = {}".format(MAE))

# R^2: R-Squared
from sklearn.metrics import r2_score
R2 = r2_score(y_test, y_pred)
print("R2 = {}".format(R2))

输出结果:

python 复制代码
MSE = 0.17473032823222068
RMSE = 0.4180075695872273
MAE = 0.3406988798247714
R2 = 0.9838332745214976
相关推荐
渲吧云渲染19 小时前
SaaS模式重构工业软件竞争规则,助力中小企业快速实现数字化转型
大数据·人工智能·sass
算家云19 小时前
DeepSeek-OCR本地部署教程:DeepSeek突破性开创上下文光学压缩,10倍效率重构文本处理范式
人工智能·计算机视觉·算家云·模型部署教程·镜像社区·deepseek-ocr
AgeClub19 小时前
1.2亿老人需助听器:本土品牌如何以AI破局,重构巨头垄断市场?
人工智能
PPIO派欧云20 小时前
PPIO上线Qwen-VL-8B/30B、GLM-4.5-Air等多款中小尺寸模型
人工智能
chenchihwen1 天前
AI代码开发宝库系列:FAISS向量数据库
数据库·人工智能·python·faiss·1024程序员节
张登杰踩1 天前
工业产品表面缺陷检测方法综述:从传统视觉到深度学习
人工智能·深度学习
sponge'1 天前
opencv学习笔记6:SVM分类器
人工智能·机器学习·支持向量机·1024程序员节
zandy10111 天前
2025年AI IDE的深度评测与推荐:从单一功能效率转向生态壁垒
ide·人工智能
旋转小马1 天前
XGBoost完整学习指南:从数据清洗到模型调参
机器学习·scikit-learn·xgboost·1024程序员节