机器学习(四)-回归模型评估指标

文章目录

    • [1. 哪个模型更好?](#1. 哪个模型更好?)
    • [2. 线性回归评估指标](#2. 线性回归评估指标)
    • [3. python 实现线性模型评估指标](#3. python 实现线性模型评估指标)

1. 哪个模型更好?

我们之前已经对房价预测的问题构建了线性模型,并对测试集进行了预测。

如图所示,横坐标是地区人口,纵坐标是房价,红色的点是实际样本分布。

使用不同的算法或者策略构建了两个线性模型,如图,分布是绿色直线和黄色直线所示。

那么如何量化我们构建的线性回归模型性能呢?如何比较这2个模型哪个更好呢?本节我们将给大家介绍一下线性回归常用的评估指标。

2. 线性回归评估指标

线性回归常用的评估指标有4个,下面详细介绍!

Var 为方差。

R2是我们常用的线性回归评估指标,主要的原因之一就是我们通过R2能更好的理解模型的性能好坏。

R^2有以下几个特点:

3. python 实现线性模型评估指标

python 复制代码
# 线性模型评估指标
# 均方误差:MSE
from sklearn.metrics import mean_squared_error
MSE = mean_squared_error(y_test, y_pred)
print("MSE = {}".format(MSE))

# 均方根误差:RMSE
RMSE = np.sqrt(MSE)
print("RMSE = {}".format(RMSE))

# 平均绝对值误差:MAE
from sklearn.metrics import mean_absolute_error
MAE = mean_absolute_error(y_test, y_pred)
print("MAE = {}".format(MAE))

# R^2: R-Squared
from sklearn.metrics import r2_score
R2 = r2_score(y_test, y_pred)
print("R2 = {}".format(R2))

输出结果:

python 复制代码
MSE = 0.17473032823222068
RMSE = 0.4180075695872273
MAE = 0.3406988798247714
R2 = 0.9838332745214976
相关推荐
跳跳糖炒酸奶11 分钟前
第四章、Isaacsim在GUI中构建机器人(3):添加摄像头和传感器
人工智能·python·算法·ubuntu·机器人
求知呀1 小时前
最直观的 Cursor 使用教程
前端·人工智能·llm
飞哥数智坊2 小时前
从“工具人”到“超级个体”:程序员如何在AI协同下实现能力跃迁
人工智能
chenqi2 小时前
WebGPU和WebLLM:在浏览器中解锁端侧大模型的未来
前端·人工智能
罗西的思考3 小时前
[2W字长文] 探秘Transformer系列之(23)--- 长度外推
人工智能·算法
小杨4044 小时前
python入门系列十四(多进程)
人工智能·python·pycharm
阿坡RPA19 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499319 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心19 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI21 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法