机器学习(四)-回归模型评估指标

文章目录

    • [1. 哪个模型更好?](#1. 哪个模型更好?)
    • [2. 线性回归评估指标](#2. 线性回归评估指标)
    • [3. python 实现线性模型评估指标](#3. python 实现线性模型评估指标)

1. 哪个模型更好?

我们之前已经对房价预测的问题构建了线性模型,并对测试集进行了预测。

如图所示,横坐标是地区人口,纵坐标是房价,红色的点是实际样本分布。

使用不同的算法或者策略构建了两个线性模型,如图,分布是绿色直线和黄色直线所示。

那么如何量化我们构建的线性回归模型性能呢?如何比较这2个模型哪个更好呢?本节我们将给大家介绍一下线性回归常用的评估指标。

2. 线性回归评估指标

线性回归常用的评估指标有4个,下面详细介绍!

Var 为方差。

R2是我们常用的线性回归评估指标,主要的原因之一就是我们通过R2能更好的理解模型的性能好坏。

R^2有以下几个特点:

3. python 实现线性模型评估指标

python 复制代码
# 线性模型评估指标
# 均方误差:MSE
from sklearn.metrics import mean_squared_error
MSE = mean_squared_error(y_test, y_pred)
print("MSE = {}".format(MSE))

# 均方根误差:RMSE
RMSE = np.sqrt(MSE)
print("RMSE = {}".format(RMSE))

# 平均绝对值误差:MAE
from sklearn.metrics import mean_absolute_error
MAE = mean_absolute_error(y_test, y_pred)
print("MAE = {}".format(MAE))

# R^2: R-Squared
from sklearn.metrics import r2_score
R2 = r2_score(y_test, y_pred)
print("R2 = {}".format(R2))

输出结果:

python 复制代码
MSE = 0.17473032823222068
RMSE = 0.4180075695872273
MAE = 0.3406988798247714
R2 = 0.9838332745214976
相关推荐
测试人社区-千羽1 分钟前
智能测试的终极形态:从自动化到自主化的范式变革
运维·人工智能·python·opencv·测试工具·自动化·开源软件
用户9186034312734 分钟前
AI重塑云原生应用开发实战-极客时间
人工智能
秋刀鱼 ..5 分钟前
2026年机器人感知与智能控制国际学术会议(RPIC 2026)
运维·人工智能·科技·金融·机器人·自动化
listhi5205 分钟前
使用Hopfield神经网络解决旅行商问题
人工智能·深度学习·神经网络
锐学AI7 分钟前
从零开始学MCP(八)- 构建一个MCP server
人工智能·python
木棉知行者8 分钟前
PyTorch 核心方法:state_dict ()、parameters () 参数打印与应用
人工智能·pytorch·python
爱打代码的小林8 分钟前
机器学习基础(线性,逻辑回归)
人工智能·机器学习·逻辑回归·线性回归
cetcht888810 分钟前
配电房 AI 巡检机器人系统:技术架构、核心功能与工程实现全解析
人工智能·架构·机器人
m0_6265352012 分钟前
看模型结构 分析模型结构
人工智能·机器学习
TaoSense14 分钟前
机器人市场洞察报告
人工智能·机器人