【Spark】Spark SQL执行计划-精简版

Spark SQL分为四个子项目:

Catalyst (sql/catalyst):

  • Catalyst 是 Spark SQL 使用的功能性、可扩展的查询优化器。它是一个与实现无关的框架,用于操作关系运算符和表达式的树。包括两部分:用来表示树的函数库和应用于该树的规则库

Execution (sql/core):

  • 查询计划程序/执行(planner / execution)引擎,用于将Catalyst的逻辑查询计划转换为Spark RDD代码。该组件还包括一个新的公共接口 SQLContext,它允许用户针对现有的 RDD和Parquet文件执行SQL或LINQ语句。

Hive支持 (sql/ Hive):

  • 包括名为 HiveContext 的 SQLContext 扩展,允许用户使用 HiveSQL 的子集编写查询并使用 Hive SerDes 从 Hive Metastore 访问数据。还有一些包装器允许用户运行包含 Hive UDF、UDAF 和 UDTF 的查询。

HiveServer和CLI支持 (sql/hive-thriftserver)

  • 包括对 SQL CLI (bin/spark-sql) 和 HiveServer2(用于 JDBC/ODBC)兼容服务器的支持。

SparkSQL执行过程:

Parser: 利用Antlr4对SQL语句进行词法和语法的解析,抽象成AST语法树并转换成Unresolved Logical Plan;
Analyzer:Catalyst要结合DataFrame的Schema信息,来确认计划中的表名、字段名、字段类型与实际数据是否一致,完成确认之后,将 Unresolved Logical Plan 解析成 Analyzed logical plan;
Optimizer:Catalyst基于一些既定的启发式规则将 Analyzed logical plan 解析成 Optimized Logical Plan;规则:如谓词下推,列减裁,常量替换;
Planner

  • 在优化Spark Plan的过程中,Catalyst基于既定的优化策略(Strategies),把逻辑计划中的关系操作符一一映射成物理操作符,生成Spark Plan;优化策略(Strategies)如下:
    • SpecialLimits:指定Limit策略
    • InMemoryScans:缓存策略
    • Aggregation:聚合策略
    • JoinSelection:Join策略选择
    • BasicOperators:逻辑到物理操作符的映射,如Project、Filter、Sort等
  • 在生成Physical Plan过程中,Catalyst再基于事先定义的Preparation Rules,对Spark Plan做进一步的完善、生成可执行的Physical Plan。Preparation Rules如下:
    • EnsureRequirements:验证输出的分区(partition)和我们要的分区是不是一样,不一样的话需要添加shuffle重分区,如果有排序需求,要添加Sort操作,
    • CollapseCodegenStages:全阶段代码生成(Whole Stage Code Generation)
    • ReuseExchange:内存或磁盘复用,
    • ReuseSubquery:子查询复数用
    • PlanSubqueries:生成子查询
    • ExtractPythonUDFs :提取Python的UDF函数
      Code Generation:选定最优的物理执行计划,准备生成字节码去开始执行
相关推荐
viperrrrrrrrrr724 分钟前
大数据学习(40)- Flink执行流
大数据·学习·flink
摘星怪sec32 分钟前
【漏洞复现】|方正畅享全媒体新闻采编系统reportCenter.do/screen.do存在SQL注入
数据库·sql·web安全·媒体·漏洞复现
十二同学啊1 小时前
JSqlParser:Java SQL 解析利器
java·开发语言·sql
莫名有雪1 小时前
BUUCTF_Web([RCTF2015]EasySQL)二次注入+报错注入
sql
m0_748237054 小时前
sql实战解析-sum()over(partition by xx order by xx)
数据库·sql
羊小猪~~7 小时前
MYSQL学习笔记(四):多表关系、多表查询(交叉连接、内连接、外连接、自连接)、七种JSONS、集合
数据库·笔记·后端·sql·学习·mysql·考研
Ase5gqe9 小时前
大数据-259 离线数仓 - Griffin架构 修改配置 pom.xml sparkProperties 编译启动
xml·大数据·架构
村口蹲点的阿三9 小时前
Spark SQL 中对 Map 类型的操作函数
javascript·数据库·hive·sql·spark
史嘉庆9 小时前
Pandas 数据分析(二)【股票数据】
大数据·数据分析·pandas
唯余木叶下弦声11 小时前
PySpark之金融数据分析(Spark RDD、SQL练习题)
大数据·python·sql·数据分析·spark·pyspark