图像处理基础 | 查看两张图像的亮度差异,Y通道相减

两张图像的Y通道相减通常用于图像差异分析或比较,尤其是在亮度方面。具体来说,这一操作是基于YCbCr颜色空间中的Y通道进行的,其中Y通道代表图像的亮度信息(亮度成分),而Cb和Cr通道分别代表色度成分(色彩信息)。

具体含义:

YCbCr颜色空间:YCbCr是一个广泛用于图像处理和视频压缩的颜色空间。在这个空间中:

Y 通道表示图像的亮度(明暗)信息。

Cb 和 Cr 通道则分别表示色度(蓝色差和红色差)信息。

Y通道相减:当我们对两张图像的Y通道进行相减时,实际上是在比较两张图像的亮度信息,目的是计算它们在亮度方面的差异。这种方法对于图像的亮度变化、对比度、或者图像间的细微差异检测特别有用。

举个例子:

假设有两张图像,它们的内容非常相似,只是在亮度方面有一些细微的差异。通过提取它们的Y通道并进行相减,你可以获得一张图像,其中显示的是两者亮度上的差异。

如果结果值为零:表示两张图像的亮度完全相同。

如果结果值为正或负:表示两张图像的亮度存在差异,具体是某一张图像比另一张图像亮或暗。

python代码如下:

python 复制代码
import cv2
import numpy as np
# 查看两张图像的亮度差异
# 读取两张图像
image1 = cv2.imread("4.jpg")
image2 = cv2.imread('3.jpg')

# 设置高斯核的大小和标准差
kernel_size = (3, 3)  # 核的大小,必须是奇数
sigma = 0  # 标准差,0会自动根据核的大小计算 sigma越大,模糊越强

# 应用高斯模糊
blurred_image = cv2.GaussianBlur(image2, kernel_size, sigma)

# 将图像转换为YCbCr颜色空间
if len(image1.shape) == 2:  # 如果是灰度图像
    image1 = cv2.cvtColor(image1, cv2.COLOR_GRAY2BGR)

if len(blurred_image.shape) == 2:  # 如果是灰度图像
    blurred_image = cv2.cvtColor(blurred_image, cv2.COLOR_GRAY2BGR)


ycbcr1 = cv2.cvtColor(image1, cv2.COLOR_BGR2YCrCb)
ycbcr2 = cv2.cvtColor(blurred_image, cv2.COLOR_BGR2YCrCb)

# 提取Y通道
y_channel1 = ycbcr1[:, :, 0]
y_channel2 = ycbcr2[:, :, 0]

# 对Y通道进行相减
y_diff = cv2.absdiff(y_channel1, y_channel2)

# 提取Cb和Cr通道
cb_channel1 = ycbcr1[:, :, 1]  # 蓝色差(Cb)
cr_channel1 = ycbcr1[:, :, 2]  # 红色差(Cr)

cb_channel2 = ycbcr2[:, :, 1]  # 蓝色差(Cb)
cr_channel2 = ycbcr2[:, :, 2]  # 红色差(Cr)

# 对Cb通道和Cr通道分别进行相减
cb_diff = cv2.absdiff(cb_channel1, cb_channel2)  # 蓝色差异
cr_diff = cv2.absdiff(cr_channel1, cr_channel2)  # 红色差异

cv2.imwrite('blurred_image.jpg', blurred_image)
cv2.imwrite('y_channel_diff.jpg', y_diff)

cv2.imwrite('cb_diff.jpg', cb_diff)
cv2.imwrite('cr_diff.jpg', cr_diff)
相关推荐
PyAIExplorer2 小时前
图像梯度处理与边缘检测:OpenCV 实战指南
人工智能·opencv·计算机视觉
CoovallyAIHub2 小时前
单目深度估计重大突破:无需标签,精度超越 SOTA!西湖大学团队提出多教师蒸馏新方案
深度学习·算法·计算机视觉
CoovallyAIHub2 小时前
从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目
深度学习·算法·计算机视觉
九章云极AladdinEdu2 小时前
华为昇腾NPU与NVIDIA CUDA生态兼容层开发实录:手写算子自动转换工具链(AST级代码迁移方案)
人工智能·深度学习·opencv·机器学习·华为·数据挖掘·gpu算力
Blue桃之夭夭2 小时前
基于OpenCV的实时人脸检测系统实现指南 ——Python+Haar级联分类器从环境搭建到完整部署
人工智能·python·opencv
presenttttt4 小时前
用Python和OpenCV从零搭建一个完整的双目视觉系统(四)
开发语言·python·opencv·计算机视觉
千宇宙航12 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第六课——测试图案的FPGA实现
图像处理·计算机视觉·fpga开发
jndingxin14 小时前
OpenCV 人脸分析----人脸识别的一个经典类cv::face::EigenFaceRecognizer
人工智能·opencv·计算机视觉
PyAIExplorer16 小时前
图像轮廓检测与绘制:OpenCV 实战指南
人工智能·opencv·计算机视觉
Dymc17 小时前
【目标检测之Ultralytics预测框颜色修改】
人工智能·yolo·目标检测·计算机视觉