NLP-UIE(Universal Information Extraction)

介绍:一种模型同时完成4种NLP任务。

原理:将几种NLP任务的输入和输出进行统一,联合训练。

任务:Entity提取、Relation关系、Event事件、Sentiment情感分类。

输入统一:通过prompt的方式去控制需要抽取的信息,(在信息加入任务类型,一同作为模型的输入,样本输入是[CLS]+prompt+[SEP]+text+[SEP])

输出统一:使用SEL(Structed extraction Language)模板来统一输出。

  • SpotName:实体类型
  • AssoName:关系
  • InfoSpan:value。

好处:

  • 多个任务共享表征,可以提升效果。
  • 减少模型维护。
  • 可以达到zero-shot的效果。
  • 能实现多标签的提取。

如何接一个位置对应多个标签问题?

介绍:新增了一个线性层用于全局 Span 判断。例如已经得到[O,B-school,I-school,I-school,I-school,I-school,I-school],然后可以使用不同位置组合使用进行MLP映射到新的label,例如位置4和5虽然都是I-school,但是经过MLP后可能是B-type]

实现:把位置4和位置5的向量concat后再MLP就得到span打分后的真实标签。

其他:

  • 标记法:「BIO 标记法」、「BIOES 标记法」
  • 传统的NLP无法解决一字多标签的问题。
  • 源码:这是一个抽取式模型,而非论文中所述的生成式,是以ERNIE编码器,接双指针解码,这个结构不是两年前香侬AI提出的MRC模型吗,区别是在这个"UIE"中似乎只有start和end,少了交叉的部分,但是思想还是双指针的思想。

参考资料

http://www.360doc.com/content/22/1014/14/7673502_1051688308.shtml

相关推荐
AKAMAI1 小时前
Akamai Cloud客户案例 | Avesha 在 Akamai 云上扩展 Kubernetes 解决方案
人工智能·云计算
wasp5201 小时前
AgentScope Java 核心架构深度解析
java·开发语言·人工智能·架构·agentscope
智算菩萨1 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom1 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
liliangcsdn1 小时前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美1 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch2 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头4152 小时前
SGLang学习笔记
人工智能·笔记·学习
飞哥数智坊3 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪3 小时前
AI建站推荐
大数据·人工智能·python