NLP-UIE(Universal Information Extraction)

介绍:一种模型同时完成4种NLP任务。

原理:将几种NLP任务的输入和输出进行统一,联合训练。

任务:Entity提取、Relation关系、Event事件、Sentiment情感分类。

输入统一:通过prompt的方式去控制需要抽取的信息,(在信息加入任务类型,一同作为模型的输入,样本输入是[CLS]+prompt+[SEP]+text+[SEP])

输出统一:使用SEL(Structed extraction Language)模板来统一输出。

  • SpotName:实体类型
  • AssoName:关系
  • InfoSpan:value。

好处:

  • 多个任务共享表征,可以提升效果。
  • 减少模型维护。
  • 可以达到zero-shot的效果。
  • 能实现多标签的提取。

如何接一个位置对应多个标签问题?

介绍:新增了一个线性层用于全局 Span 判断。例如已经得到[O,B-school,I-school,I-school,I-school,I-school,I-school],然后可以使用不同位置组合使用进行MLP映射到新的label,例如位置4和5虽然都是I-school,但是经过MLP后可能是B-type]

实现:把位置4和位置5的向量concat后再MLP就得到span打分后的真实标签。

其他:

  • 标记法:「BIO 标记法」、「BIOES 标记法」
  • 传统的NLP无法解决一字多标签的问题。
  • 源码:这是一个抽取式模型,而非论文中所述的生成式,是以ERNIE编码器,接双指针解码,这个结构不是两年前香侬AI提出的MRC模型吗,区别是在这个"UIE"中似乎只有start和end,少了交叉的部分,但是思想还是双指针的思想。

参考资料

http://www.360doc.com/content/22/1014/14/7673502_1051688308.shtml

相关推荐
AndrewHZ19 分钟前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
5G行业应用23 分钟前
【赠书福利,回馈公号读者】《智慧城市与智能网联汽车,融合创新发展之路》
人工智能·汽车·智慧城市
悟空胆好小32 分钟前
分音塔科技(BABEL Technology) 的公司背景、股权构成、产品类型及技术能力的全方位解读
网络·人工智能·科技·嵌入式硬件
探讨探讨AGV32 分钟前
以科技赋能未来,科聪持续支持青年创新实践 —— 第七届“科聪杯”浙江省大学生智能机器人创意竞赛圆满落幕
人工智能·科技·机器人
cwn_1 小时前
回归(多项式回归)
人工智能·机器学习·数据挖掘·回归
聚客AI1 小时前
🔥 大模型开发进阶:基于LangChain的异步流式响应与性能优化
人工智能·langchain·agent
CareyWYR2 小时前
每周AI论文速递(250707-250711)
人工智能
AI街潜水的八角2 小时前
深度学习图像分类数据集—五种电器识别分类
人工智能·深度学习·分类
众链网络2 小时前
AI进化论08:机器学习的崛起——数据和算法的“二人转”,AI“闷声发大财”
人工智能·算法·机器学习
生命是有光的2 小时前
【机器学习】机器学习基础
人工智能·机器学习