【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)

正则化强度的倒数 C (Inverse of Regularization Strength)

在机器学习中,特别是线性模型(如逻辑回归、支持向量机)中,正则化参数的倒数 C 是控制正则化强度的重要超参数。


1. 定义

C 的数学定义为:

其中:

  • λ 是正则化参数,表示正则化强度。
  • C 越大,正则化强度越弱;C 越小,正则化强度越强。

正则化的目标是通过在损失函数中添加正则项,控制模型的复杂度,从而防止过拟合或欠拟合。


2. 损失函数与正则化项

以逻辑回归为例,损失函数为:

引入 C 后,公式变为:

  • 第一项:数据误差,衡量模型对训练数据的拟合程度。
  • 第二项:正则化项,控制模型参数 w 的大小以避免过拟合。

3. C 的作用

(1) C 大小对模型的影响
  • C 大(即 λ 小):

    • 正则化强度弱,模型更关注拟合训练数据。
    • 可能导致过拟合。
  • C 小(即 λ 大):

    • 正则化强度强,模型更关注限制参数的大小。
    • 可能导致欠拟合。
(2) 直观理解
    • 正则化项被忽略,模型完全拟合数据。
    • 正则化项占主导,模型趋于简单,可能表现为所有参数趋于 0。

4. 如何选择 C

(1) 网格搜索

通过交叉验证,尝试不同的 C 值,选择使模型性能最优的参数。

python 复制代码
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# 生成二分类数据
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 定义模型和参数范围
model = LogisticRegression()
param_grid = {'C': [0.01, 0.1, 1, 10, 100]}

# 使用网格搜索
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)

print(f"最佳参数: {grid_search.best_params_}")

输出结果

Matlab 复制代码
最佳参数: {'C': 0.01}
(2) 对数据特性的考虑
  • 数据维度高:可能需要较大的正则化(小 C)。
  • 数据维度低:可以尝试较小的正则化(大 C)。
(3) 观察过拟合或欠拟合
  • 如果训练集性能高但测试集性能低:减小 C(增加正则化强度)。
  • 如果训练集和测试集性能均低:增大 C(减小正则化强度)。

5. 示例代码

以下是一个逻辑回归模型中使用 C 控制正则化强度的示例:

python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# 生成二分类数据
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 使用不同的C值训练模型
for C in [0.01, 0.1, 1, 10, 100]:
    model = LogisticRegression(C=C, random_state=42, max_iter=1000)
    model.fit(X_train, y_train)

    # 预测并计算准确率
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f"C={C}, 测试集准确率={accuracy:.4f}")

输出结果

Matlab 复制代码
C=0.01, 测试集准确率=0.8500
C=0.1, 测试集准确率=0.8467
C=1, 测试集准确率=0.8500
C=10, 测试集准确率=0.8467
C=100, 测试集准确率=0.8467

6. 总结

  • 正则化强度的倒数 C 是控制模型正则化的重要参数。
  • C 的大小决定了模型对数据拟合能力与正则化强度的权衡。
  • 在实践中,合理选择 C 可以显著提升模型的性能,同时避免过拟合或欠拟合。
相关推荐
顺丰同城前端技术团队1 分钟前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享4 分钟前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
烟锁池塘柳024 分钟前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
一尘之中37 分钟前
全素山药开发指南:从防痒处理到高可用食谱架构
人工智能
加油吧zkf1 小时前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf1 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
峙峙峙1 小时前
线性代数--AI数学基础复习
人工智能·线性代数
weiwuxian1 小时前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee1 小时前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域2 小时前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源