【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)

正则化强度的倒数 C (Inverse of Regularization Strength)

在机器学习中,特别是线性模型(如逻辑回归、支持向量机)中,正则化参数的倒数 C 是控制正则化强度的重要超参数。


1. 定义

C 的数学定义为:

其中:

  • λ 是正则化参数,表示正则化强度。
  • C 越大,正则化强度越弱;C 越小,正则化强度越强。

正则化的目标是通过在损失函数中添加正则项,控制模型的复杂度,从而防止过拟合或欠拟合。


2. 损失函数与正则化项

以逻辑回归为例,损失函数为:

引入 C 后,公式变为:

  • 第一项:数据误差,衡量模型对训练数据的拟合程度。
  • 第二项:正则化项,控制模型参数 w 的大小以避免过拟合。

3. C 的作用

(1) C 大小对模型的影响
  • C 大(即 λ 小):

    • 正则化强度弱,模型更关注拟合训练数据。
    • 可能导致过拟合。
  • C 小(即 λ 大):

    • 正则化强度强,模型更关注限制参数的大小。
    • 可能导致欠拟合。
(2) 直观理解
    • 正则化项被忽略,模型完全拟合数据。
    • 正则化项占主导,模型趋于简单,可能表现为所有参数趋于 0。

4. 如何选择 C

(1) 网格搜索

通过交叉验证,尝试不同的 C 值,选择使模型性能最优的参数。

python 复制代码
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# 生成二分类数据
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 定义模型和参数范围
model = LogisticRegression()
param_grid = {'C': [0.01, 0.1, 1, 10, 100]}

# 使用网格搜索
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)

print(f"最佳参数: {grid_search.best_params_}")

输出结果

Matlab 复制代码
最佳参数: {'C': 0.01}
(2) 对数据特性的考虑
  • 数据维度高:可能需要较大的正则化(小 C)。
  • 数据维度低:可以尝试较小的正则化(大 C)。
(3) 观察过拟合或欠拟合
  • 如果训练集性能高但测试集性能低:减小 C(增加正则化强度)。
  • 如果训练集和测试集性能均低:增大 C(减小正则化强度)。

5. 示例代码

以下是一个逻辑回归模型中使用 C 控制正则化强度的示例:

python 复制代码
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# 生成二分类数据
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 使用不同的C值训练模型
for C in [0.01, 0.1, 1, 10, 100]:
    model = LogisticRegression(C=C, random_state=42, max_iter=1000)
    model.fit(X_train, y_train)

    # 预测并计算准确率
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f"C={C}, 测试集准确率={accuracy:.4f}")

输出结果

Matlab 复制代码
C=0.01, 测试集准确率=0.8500
C=0.1, 测试集准确率=0.8467
C=1, 测试集准确率=0.8500
C=10, 测试集准确率=0.8467
C=100, 测试集准确率=0.8467

6. 总结

  • 正则化强度的倒数 C 是控制模型正则化的重要参数。
  • C 的大小决定了模型对数据拟合能力与正则化强度的权衡。
  • 在实践中,合理选择 C 可以显著提升模型的性能,同时避免过拟合或欠拟合。
相关推荐
数据分析能量站8 分钟前
神经网络-AlexNet
人工智能·深度学习·神经网络
Ven%14 分钟前
如何修改pip全局缓存位置和全局安装包存放路径
人工智能·python·深度学习·缓存·自然语言处理·pip
szxinmai主板定制专家28 分钟前
【NI国产替代】基于国产FPGA+全志T3的全国产16振动+2转速(24bits)高精度终端采集板卡
人工智能·fpga开发
YangJZ_ByteMaster36 分钟前
EndtoEnd Object Detection with Transformers
人工智能·深度学习·目标检测·计算机视觉
Anlici37 分钟前
模型训练与数据分析
人工智能·机器学习
余~~185381628001 小时前
NFC 碰一碰发视频源码搭建技术详解,支持OEM
开发语言·人工智能·python·音视频
唔皇万睡万万睡1 小时前
五子棋小游戏设计(Matlab)
人工智能·matlab·游戏程序
视觉语言导航2 小时前
AAAI-2024 | 大语言模型赋能导航决策!NavGPT:基于大模型显式推理的视觉语言导航
人工智能·具身智能
volcanical2 小时前
Bert各种变体——RoBERTA/ALBERT/DistillBert
人工智能·深度学习·bert
知来者逆2 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型