如何通过HTTP API检索Doc

本文介绍如何通过HTTP API在Collection中进行相似性检索。


前提条件

Method与URL

HTTP

复制代码
POST https://{Endpoint}/v1/collections/{CollectionName}/query

使用示例

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. 本示例需要参考新建Collection-使用示例提前创建好名称为quickstart的Collection

根据向量进行相似性检索

Bash

复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vector": [0.1, 0.2, 0.3, 0.4],
    "topk": 10,
    "include_vector": true
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart/query

# example output:
# {
#   "code": 0,
#   "request_id": "2cd1cac7-f1ee-4d15-82a8-b65e75d8fd13",
#   "message": "Success",
#   "output": [
#     {
#       "id": "1",
#       "vector":[
#         0.10000000149011612,
#         0.20000000298023224,
#         0.30000001192092896,
#         0.4000000059604645
#       ],
#       "fields": {
#         "name": "zhangshan",
#         "weight": null,
#         "age": 20,
#         "anykey": "anyvalue"
#       },
#       "score": 0.3
#     }
#   ]
# }

根据主键(对应的向量)进行相似性检索

Bash

复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "id": "1",
    "topk": 1,
    "include_vector": true
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart/query

# example output:
# {
#   "code":0,
#   "request_id":"fab4e8a2-15e4-4b55-816f-3b66b7a44962",
#   "message":"Success",
#   "output":[
#     {
#       "id":"1",
#       "vector":[
#         0.10000000149011612,
#         0.20000000298023224,
#         0.30000001192092896,
#         0.4000000059604645
#       ],
#        "fields": {
#         "name": "zhangshan",
#         "weight": null,
#         "age": 20,
#         "anykey": "anyvalue"
#       },
#       "score": 0.3
#     }
#   ]
# }

带过滤条件的相似性检索

Bash

复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "filter": "age > 18",
    "topk": 1,
    "include_vector": true
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart/query
  
# example output:
# {
#   "code":0,
#   "request_id":"4c7331d8-fba1-4c3a-8673-124568670de7",
#   "message":"Success",
#   "output":[
#     {
#       "id":"1",
#       "vector":[
#         0.10000000149011612,
#         0.20000000298023224,
#         0.30000001192092896,
#         0.4000000059604645
#       ],
#        "fields": {
#         "name": "zhangshan",
#         "weight": null,
#         "age": 20,
#         "anykey": "anyvalue"
#       },
#       "score": 0.0
#     }
#   ]
# }

带有Sparse Vector的向量检索

Bash

复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vector": [0.1, 0.2, 0.3, 0.4],
    "sparse_vector":{"1":0.4, "10000":0.6, "222222":0.8},
    "topk": 1,
    "include_vector": true
  }' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart/query

# example output:
# {
#   "code":0,
#   "request_id":"ad84f7a0-b4b2-4023-ae80-b6f092609a53",
#   "message":"Success",
#   "output":[
#     {
#       "id":"2",
#       "vector":[
#         0.10000000149011612,
#         0.20000000298023224,
#         0.30000001192092896,
#         0.4000000059604645
#       ],
#       "fields":{"name":null,"weight":null,"age":null},
#       "score":1.46,
#       "sparse_vector":{
#         "10000":0.6,
#         "1":0.4,
#         "222222":0.8
#       }
#     }
#   ]
# }

向量检索高级参数

说明

详情可参考 向量检索高级参数

复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vector": [0.1, 0.2, 0.3, 0.4], 
    "vector_param":{ "radius": 0.53, "is_linear": false, "ef": 1000 },
    "topk": 10,
    "include_vector": true
}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart_euclidean/query

#example output:
#{
#    "code": 0,
#    "request_id": "59df860b-7d29-466b-a345-0bfe9e27329e",
#    "message": "Success",
#    "output": [
#        {
#            "id": "2",
#            "vector": [
#                0.20000000298023224,
#                0.30000001192092896,
#                0.4000000059604645,
#                0.5
#            ],
#            "fields": {
#                "anykey1": "str-value",
#                "anykey2": 1,
#                "name": "zhangshan",
#                "weight": null,
#                "anykey3": true,
#                "anykey4": 3.1415925,
#                "age": 70
#            },
#            "score": 0.04
#        },
#        {
#            "id": "3",
#            "vector": [
#                0.30000001192092896,
#                0.4000000059604645,
#                0.5,
#                0.6000000238418579
#            ],
#            "fields": {
#                "name": null,
#                "weight": null,
#                "age": null
#            },
#            "score": 0.16000001
#        },
#        {
#            "id": "4",
#            "vector": [
#                0.4000000059604645,
#                0.5,
#                0.6000000238418579,
#                0.699999988079071
#            ],
#            "fields": {
#                "name": "zhangsan",
#                "weight": null,
#                "age": 20
#            },
#            "score": 0.36
#        }
#    ]
#}

多向量检索

说明

详情可参考 多向量检索

RrfRanker示例
复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vectors": {"title": {"vector": [0.1, 0.2, 0.3, 0.4]}, "content": {"vector": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], "param": {"num_candidates": 10}}},
    "topk": 20,
    "rerank": {"ranker_name": "rrf", "ranker_params": {"rank_constant":"100"} }
}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/multi_vector_demo/query

# example output:
#{
#    "code": 0,
#    "request_id": "db20ba2b-9dc6-4c23-9266-430e6fb1a70d",
#    "message": "Success",
#    "output": [
#        {
#            "id": "1",
#            "fields": {
#                "author": null
#            },
#            "score": 0.019704912
#        },
#        {
#            "id": "2",
#            "fields": {
#                "author": "zhangsan"
#            },
#            "score": 0.00990099
#        },
#        {
#            "id": "3",
#            "fields": {
#                "author": null,
#                "anykey": "anyvalue"
#            },
#            "score": 0.009803922
#        }
#    ]
#}
WeightedRanker示例
复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vectors": {"title": {"vector": [0.1, 0.2, 0.3, 0.4]}, "content": {"vector": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], "param": {"num_candidates": 10}}},
    "topk": 20,
    "rerank": {"ranker_name": "weighted", "ranker_params": {"weights": "{\"title\":0.2, \"content\":0.8}" }}
}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/multi_vector_demo/query

# example output:
#{
#    "code": 0,
#    "request_id": "c7413fa9-92fd-4493-8f21-6c65c83e7b91",
#    "message": "Success",
#    "output": [
#        {
#            "id": "1",
#            "fields": {
#                "author": null
#            },
#            "score": 0.8156271
#        },
#        {
#            "id": "3",
#            "fields": {
#                "author": null,
#                "anykey": "anyvalue"
#            },
#            "score": 0.5880098
#        },
#        {
#            "id": "2",
#            "fields": {
#                "author": "zhangsan"
#            },
#            "score": 0.2
#        }
#    ]
#}
使用多向量的一个向量执行检索
复制代码
curl -XPOST \
  -H 'dashvector-auth-token: YOUR_API_KEY' \
  -H 'Content-Type: application/json' \
  -d '{
    "vectors": {"title": {"vector": [0.1, 0.2, 0.3, 0.4], "param":{ "radius": 0.1, "is_linear": true, "ef": 1000 }}},
    "topk": 20,
    "include_vector": true
}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/multi_vector_demo/query

# example output:
#{
#    "code": 0,
#    "request_id": "b9bc3d5a-8edf-4d5b-916d-0ced6ae570cb",
#    "message": "Success",
#    "output": [
#        {
#            "id": "4",
#            "vectors": {
#                "title": [
#                    0.10000000149011612,
#                    0.20000000298023224,
#                    0.30000001192092896,
#                    0.4000000059604645
#                ]
#            },
#            "fields": {
#                "author": "zhangsan"
#            },
#            "score": 0.0
#        },
#        {
#            "id": "2",
#            "vectors": {
#                "title": [
#                    0.10000000149011612,
#                    0.20000000298023224,
#                    0.30000001192092896,
#                    0.4000000059604645
#                ]
#            },
#            "fields": {
#                "author": "zhangsan"
#            },
#            "score": 0.0
#        }
#    ]
#}

入参描述

说明

vectorid两个入参需要二选一使用,如都不传入,则仅完成条件过滤。

|-----------------------|--------------|--------|--------|--------------------------------------------------------------------------------------------------------------------------|
| 参数 | Location | 类型 | 必填 | 说明 |
| {Endpoint} | path | str | 是 | Cluster的Endpoint,可在控制台Cluster详情中查看 |
| {CollectionName} | path | str | 是 | Collection名称 |
| dashvector-auth-token | header | str | 是 | api-key |
| vector | body | array | 否 | 向量数据 |
| sparse_vector | body | dict | 否 | 稀疏向量 |
| id | body | str | 否 | 主键,表示根据主键对应的向量进行相似性检索 |
| topk | body | int | 否 | 返回topk相似性结果,默认10 |
| filter | body | str | 否 | 过滤条件,需满足SQL where子句规范,详见条件过滤检索 |
| include_vector | body | bool | 否 | 是否返回向量数据,默认false |
| output_fields | body | array | 否 | 返回field的字段名列表,默认返回所有Fields |
| partition | body | str | 否 | Partition名称 |
| vectors | body | dict | 否 | 多个向量检索,类型为Map<String, VectorQuery>,详情参考多向量检索 |
| rerank | body | dict | 否 | 融合排序参数,详情参考多向量检索 |
| vector_param | body | dict | 否 | 高级检索参数,详情参考 向量检索高级参数 |

出参描述

|------------|--------|-----------------------------------------------------------------------------------|--------------------------------------|
| 字段 | 类型 | 描述 | 示例 |
| code | int | 返回值,参考返回状态码说明 | 0 |
| message | str | 返回消息 | success |
| request_id | str | 请求唯一id | 19215409-ea66-4db9-8764-26ce2eb5bb99 |
| output | array | 相似性检索结果,Doc列表 | |
| usage | map | 对Serverless实例(按量付费)集合的Doc检索请求,成功后返回实际消耗的读请求单元数 | { Usage: { read_units: 8 } } |

相关推荐
llzcxdb2 分钟前
【MySQL】理解MySQL的双重缓冲机制:Buffer Pool与Redo Log的协同之道
数据库·mysql
AndrewHZ8 分钟前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
Ai尚研修-贾莲8 分钟前
基于DeepSeek、ChatGPT支持下的地质灾害风险评估、易发性分析、信息化建库及灾后重建
人工智能·chatgpt
SelectDB技术团队33 分钟前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·数据仓库·人工智能·ai·数据分析·湖仓一体
冷凝女子33 分钟前
【QT】获取文件路径中的文件名,去掉后缀,然后提取文件名中的数字
开发语言·数据库·qt
weixin_4352081633 分钟前
通过 Markdown 改进 RAG 文档处理
人工智能·python·算法·自然语言处理·面试·nlp·aigc
Y第五个季节36 分钟前
Redis - HyperLogLog
数据库·redis·缓存
大数据在线36 分钟前
AI重塑云基础设施,亚马逊云科技打造AI定制版IaaS“样板房”
人工智能·云基础设施·ai大模型·亚马逊云科技
hello_ejb337 分钟前
聊聊Spring AI的RetrievalAugmentationAdvisor
人工智能·spring·restful
你觉得2051 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint